
A Comprehensive Course in Number Theory
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Preface

This is a sequel to my earlier book, A Concise Introduction to the Theory of
Numbers. The latter was based on a short preparatory course of the kind tradi-
tionally taught in Cambridge at around the time of publication about 25 years
ago. Clearly it was in need of updating, and it was originally intended that a
second edition be produced. However, on looking through, it became apparent
that the work would blend well with more advanced material arising from my
lecture courses in Cambridge at a higher level, and it was decided accordingly
that it would be more appropriate to produce a substantially new book. The
now much expanded text covers elements of cryptography and primality test-
ing. It also provides an account of number fields in the classical vein including
properties of their units, ideals and ideal classes. In addition it covers vari-
ous aspects of analytic number theory including studies of the Riemann zeta-
function, the prime-number theorem, primes in arithmetical progressions and
a brief exposition of the Hardy–Littlewood and sieve methods. Many worked
examples are given and, as with the earlier volume, there are guides to further
reading at the ends of the chapters.

The following remarks, taken from the Concise Introduction, apply even
more appropriately here:

The theory of numbers has a long and distinguished history, and indeed the concepts and
problems relating to the field have been instrumental in the foundation of a large part
of mathematics. It is very much to be hoped that our exposition will serve to stimulate
the reader to delve into the rich literature associated with the subject and thereby to
discover some of the deep and beautiful theories that have been created as a result of
numerous researches over the centuries. By way of introduction, there is a short account
of the Disquisitiones Arithmeticae of Gauss, and, to begin with, the reader can scarcely
do better than to consult this famous work.

To complete the text there is a chapter on elliptic curves; here my main
source has been lecture notes by Dr Tom Fisher of a course that he has given

xi
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xii Preface

regularly in Cambridge in recent times. I am indebted to him for generously
providing me with a copy of the notes and for further expert advice. I am grate-
ful also to Mrs Michèle Bailey for her invaluable secretarial assistance with
my lectures over many years and to Dr David Tranah of Cambridge University
Press for his constant encouragement in the production of this book.

Cambridge 2012 A.B.
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Introduction

Gauss and Number Theory†

Without doubt the theory of numbers was Gauss’ favourite subject. Indeed,
in a much quoted dictum, he asserted that Mathematics is the Queen of the
Sciences and the Theory of Numbers is the Queen of Mathematics. Moreover,
in the introduction to Eisenstein’s Mathematische Abhandlungen, Gauss wrote:

The Higher Arithmetic presents us with an inexhaustible storehouse of interesting
truths – of truths, too, which are not isolated but stand in the closest relation to one
another, and between which, with each successive advance of the science, we contin-
ually discover new and sometimes wholly unexpected points of contact. A great part
of the theories of Arithmetic derive an additional charm from the peculiarity that we
easily arrive by induction at important propositions which have the stamp of simplicity
upon them but the demonstration of which lies so deep as not to be discovered until
after many fruitless efforts; and even then it is obtained by some tedious and artificial
process while the simpler methods of proof long remain hidden from us.

All this is well illustrated by what is perhaps Gauss’ most profound pub-
lication, namely his Disquisitiones Arithmeticae. It has been described, quite
justifiably I believe, as the Magna Carta of Number Theory, and the depth and
originality of thought manifest in this work are particularly remarkable con-
sidering that it was written when Gauss was only about 18 years of age. Of
course, as Gauss said himself, not all of the subject matter was new at the
time of writing, and Gauss acknowledged the considerable debt that he owed
to earlier scholars, in particular Fermat, Euler, Lagrange and Legendre. But
the Disquisitiones Arithmeticae was the first systematic treatise on the Higher
Arithmetic and it provided the foundations and stimulus for a great volume

† This article was originally prepared for a meeting of the British Society for the History of
Mathematics held in Cambridge in 1977 to celebrate the bicentenary of Gauss’ birth.
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xiv Introduction

of subsequent research which is in fact continuing to this day. The impor-
tance of the work was recognized as soon as it was published in 1801 and the
first edition quickly became unobtainable; indeed many scholars of the time
had to resort to taking handwritten copies. But it was generally regarded as
a rather impenetrable work and it was probably not widely understood; per-
haps the formal Latin style contributed in this respect. Now, however, after
numerous reformulations, most of the material is very well known, and the
earlier sections at least are included in every basic course on number
theory.

The text begins with the definition of a congruence, namely two numbers
are said to be congruent modulo n if their difference is divisible by n. This
is plainly an equivalence relation in the now familiar terminology. Gauss pro-
ceeds to the discussion of linear congruences and shows that they can in fact be
treated somewhat analogously to linear equations. He then turns his attention
to power residues and introduces, amongst other things, the concepts of primi-
tive roots and indices; and he notes, in particular, the resemblance between the
latter and the ordinary logarithms. There follows an exposition of the theory
of quadratic congruences, and it is here that we meet, more especially, the fa-
mous law of quadratic reciprocity; this asserts that if p, q are primes, not both
congruent to 3 (mod 4), then p is a residue or non-residue of q according as
q is a residue or non-residue of p, while in the remaining case the opposite
occurs. As is well known, Gauss spent a great deal of time on this result and
gave several demonstrations; and it has subsequently stimulated much excel-
lent research. In particular, following works of Jacobi, Eisenstein and Kummer,
Hilbert raised as the ninth of his famous list of problems presented at the Paris
Congress of 1900 the question of obtaining higher reciprocity laws, and this
led to the celebrated studies of Furtwängler, Artin and others in the context of
class field theory.

By far the largest section of the Disquisitiones Arithmeticae is concerned
with the theory of binary quadratic forms. Here Gauss describes how quadratic
forms with a given discriminant can be divided into classes so that two forms
belong to the same class if and only if there exists an integral unimodular sub-
stitution relating them, and how the classes can be divided into genera, so that
two forms are in the same genus if and only if they are rationally equivalent.
He proceeds to apply these concepts so as, for instance, to throw light on the
difficult question of the representation of integers by binary forms. It is a re-
markable and beautiful theory with many important ramifications. Indeed, after
re-interpretation in terms of quadratic fields, it became apparent that it could
be applied much more widely, and in fact it can be regarded as having provided
the foundations for the whole of algebraic number theory. The term ‘Gaussian
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Introduction xv

field’, meaning the field generated over the rationals by i , is a reminder of
Gauss’ pioneering work in this area.

The remainder of the Disquisitiones Arithmeticae contains results of a more
miscellaneous character, relating, for instance, to the construction of 17-sided
polygons, which was clearly of particular appeal to Gauss, and to what is now
termed the cyclotomic field, that is, the field generated by a primitive root of
unity. And especially noteworthy here is the discussion of certain sums involv-
ing roots of unity, now referred to as Gaussian sums, which play a fundamental
role in the analytic theory of numbers.

I conclude this introduction with some words of Mordell. In an essay pub-
lished in 1917 he wrote ‘The theory of numbers is unrivalled for the number
and variety of its results and for the beauty and wealth of its demonstrations.
The Higher Arithmetic seems to include most of the romance of mathemat-
ics. As Gauss wrote to Sophie Germain, the enchanting beauties of this sub-
lime study are revealed in their full charm only to those who have the courage
to pursue it.’ And Mordell added ‘We are reminded of the folk-tales, current
amongst all peoples, of the Prince Charming who can assume his proper form
as a handsome prince only because of the devotedness of the faithful heroine.’
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