Neuroimaging of Sleep and Sleep Disorders

Edited by

Eric Nofzinger
The founder, Chief Medical Officer and founding CEO of Cerêve, Pittsburgh PA, USA

Pierre Maquet
Cyclotron Research Centre, University of Liège, Liège, Belgium

Michael J. Thorpy
Director, Sleep-Wake Disorders Center, Montefiore Medical Center, and Professor of Clinical Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
### Contents

<table>
<thead>
<tr>
<th>Section 1</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The role of neuroimaging in sleep and sleep disorders</td>
<td>Eric Nofzinger</td>
</tr>
<tr>
<td>2. Neuroanatomy and physiology of sleep and wakefulness</td>
<td>Pierre-Hervé Luppi and Patrice Fort</td>
</tr>
<tr>
<td>3. Fundamentals of structural MR imaging</td>
<td>Keivan Shifteh and Michael L. Lipton</td>
</tr>
<tr>
<td>4. Fundamentals of MRI for assessing brain function and metabolism</td>
<td>William A. Gomes and Michael L. Lipton</td>
</tr>
<tr>
<td>5. Fundamentals of PET scanning</td>
<td>Bohdan Bybel, Andrew L. Goertzen, and Shadreck Mzengeza</td>
</tr>
<tr>
<td>6. Fundamentals of single-photon emission computed tomography (SPECT) and SPECT/CT imaging</td>
<td>Mordechai Lorberboym</td>
</tr>
<tr>
<td>7. Fundamentals of transcranial B-mode sonography</td>
<td>Jana Godau and Daniela Berg</td>
</tr>
<tr>
<td>8. Fundamentals of magnetoencephalography</td>
<td>Jeffrey David Lewine, Nitin Bangera, and Bruce J. Fisch</td>
</tr>
<tr>
<td>9. Fundamentals of low-resolution brain electromagnetic tomography</td>
<td>Peter Anderer and Bernd Saletu</td>
</tr>
<tr>
<td>10. Methodology of combined EEG and fMRI</td>
<td>Helmut Laufs and Karsten Krakow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 2</th>
<th>Neuroimaging of wakefulness and sleep</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Neuroimaging of wakefulness</td>
<td>Frederic von Wegner and Helmut Laufs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 3</th>
<th>Neuroimaging, sleep loss, and circadian misalignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Neuroimaging of phasic and non-phasic NREM activities</td>
<td>Thien Thanh Dang-Vu</td>
</tr>
<tr>
<td>13. Functional connectivity in wakefulness and sleep</td>
<td>Victor I. Spoormaker and Michael Czisch</td>
</tr>
<tr>
<td>15. Complementarity of dream research and neuroimaging of sleep</td>
<td>Sophie Schwartz</td>
</tr>
</tbody>
</table>

| 16. Functional neuroimaging of sleep deprivation | Michael W. L. Chee and Robert Joseph Thomas |
| 17. Neuroimaging of attention and alteration of processing capacity in sleep-deprived persons | Michael W. L. Chee and Christopher L. Asplund |
| 18. Economic decision-making and the sleep-deprived brain | Vinod Venkatraman, Scott A. Huettel, Camilo Libedinsky, and Michael W. L. Chee |
| 19. Functional imaging of inter-individual differences in response to sleep deprivation | Michael W. L. Chee and Hans P. A. Van Dongen |
| 20. Neuroimaging the interaction between circadian and homeostatic processes | Gilles Vandewalle and Christina Schmidt |
| 21. Neuroimaging the effects of light on non-visual brain functions | Gilles Vandewalle and Derk-Jan Dijk |
## Contents

### Section 4  Sleep and memory

22. Memory systems, sleep, and neuroimaging  
   Steffen Gais and Monika Schönauer  
   179

### Section 5  Neuroimaging of sleep disorders

23. Imaging causes and consequences of insomnia and sleep complaints  
   Eus J. W. Van Someren, Ellemarije Altena, Jennifer R. Ramautar, Diederick Stoffers, Jeroen S. Benjamins, Sarah Moens, Eun Yeoan Joo, Seung Bong Hong, and Ysbrand D. Van Der Werf  
   187

24. Functional neuroimaging of primary insomnia  
   Eric Nofzinger  
   197

25. Sleep neuroimaging in depression and schizophrenia  
   Eric Nofzinger  
   209

26. Structural neuroimaging of narcolepsy  
   Eun Yeoan Joo and Seung Bong Hong  
   218

27. Functional neuroimaging of narcolepsy  
   Thien Thanh Dang-Vu and Sophie Schwartz  
   223

28. Neuroimaging of treatment response in narcolepsy  
   Thien Thanh Dang-Vu  
   228

29. Modafinil effects in narcolepsy  
   Michael T. Saletu and Gerda Saletu-Zyhlarz  
   231

30. Neuroimaging of Kleine–Levin syndrome  
   Maria Engström  
   240

31. Neuroimaging of cataplexy  
   Michael J. Thorpy  
   246

32. Structural brain neuroimaging changes in obstructive sleep apnea  
   Paul M. Macey  
   248

33. Imaging the airway in obstructive sleep apnea  
   Joseph T. Daley and Richard J. Schweb  
   256

34. Neuroimaging of cognitive effects in obstructive sleep apnea  
   Robert Joseph Thomas and Suk-tak Chan  
   264

35. Neuroimaging of autonomic dysfunction and ventilatory control in obstructive sleep apnea  
   Paul M. Macey  
   275

36. Neuroimaging of treatment effects in obstructive sleep apnea  
   Mark S. Aloia and Vincenzo Castronovo  
   284

37. Structural and functional neuroimaging of congenital central hypoventilation syndrome  
   Ronald M. Harper and Rajesh Kumar  
   293

38. Neuroimaging of disorders of arousal and other parasomnias  
   Romy Hoque and Lourdes DelRosso  
   301

39. Neuroimaging of Parkinson’s disease and multiple system atrophy in patients with sleep disturbance  
   Jason Valerio and A. Jon Stoessel  
   305

40. Neuroimaging of idiopathic REM sleep behavior disorder  
   Alex Iranzo  
   316

41. Cardiac 123I-MIBG scintigraphic findings and REM sleep behavior disorder  
   Takashi Nomura and Yuichi Inoue  
   333

42. Neuroimaging and posttraumatic stress disorder  
   Ryan P. J. Stocker and Anne Germain  
   340

43. Neuroimaging of sleepwalking  
   Michael J. Thorpy  
   347

44. Neuroimaging of the brainstem in parasomnia overlap disorder  
   Michael J. Thorpy  
   349

45. Nocturnal wanderings and an arachnoid cyst  
   Alejandro Jimez-Gench and Yzmin de la Garza-Neme  
   352

46. Structural and functional neuroimaging of restless legs syndrome and periodic limb movements in sleep  
   Thorleif Etgen  
   355

47. Functional neuroimaging of dopamine, iron, and opiates in restless legs syndrome  
   Thomas C. Wetter and Gerhard Klösch  
   363

48. Neuroimaging and fatal familial insomnia  
   Daniela Perani and Pietro Cortelli  
   375

49. Neuroimaging of sleep-related epilepsies  
   Cheng Luo and Dezhong Yao  
   384
| 50. | Sleep, neuroimaging, and polysomnography of Wilson’s disease | 391 |
|     | Sanjib Sinha and A. B. Taly |
| 51. | Functional neuroimaging: sedating medication effects | 396 |
|     | Hans-Peter Landolt and Emily Urry |
| 52. | Functional neuroimaging of alerting medication effects | 406 |
|     | Robert Joseph Thomas |
| 53. | Zolpidem-induced parasomnias | 414 |
|     | Romy Hoque |

Index 416
Contributors

Mark S. Aloia PhD
Department of Medicine, National Jewish Health, Denver, CO; Office of Medical & Health Affairs, Philips Healthcare, Andover, MA, USA

Ellemarije Altena PhD
Department of Sleep & Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK

Peter Anderer PhD
Department of Psychiatry & Psychotherapy, Medical University of Vienna, Vienna, Austria

Christopher L. Asplund PhD
Neuroscience & Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore

Nitin Bangera PhD
The Mind Research Network, Albuquerque, NM, USA

Jeroen S. Benjamins PhD
Department of Sleep & Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands

Daniela Berg MD
Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Disorders (DZNE), University of Tübingen, Tübingen, Germany

Bohdan Bybel MD FRCPs
Section of Nuclear Medicine, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada

Vincenza Castronovo PhD
Sleep Disorders Center, University Vita-Salute San Raffaele and San Raffaele Scientific Institute, Milan, Italy

Suk-tak Chan MSc PhD
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA

Michael W. L. Chee MBBS FRCPEd
Neuroscience & Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore

Pietro Cortelli MD PhD
Department of Neurology, University of Bologna; IRCSS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy

Michael Czisch PhD
Max Planck Institute of Psychiatry, Munich, Germany

Joseph T. Daley MD PhD
Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Thien Thanh Dang-Vu MD PhD
Cyclotron Research Centre, University of Liège, Liège, Belgium; Center for Advanced Studies in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal and University of Montreal, Montréal, Québec, Canada

Yazmín de la Garza-Neme MD
Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Tlalpan, México

Lourdes DelRosso MD
Division of Sleep Medicine, Department of Neurology, Louisiana State University School of Medicine, Shreveport, LA, USA

Derk-Jan Dijk PhD
Surrey Sleep Research Centre, University of Surrey, Guildford, UK

Maria Engström PhD
Center for Medical Image Science & Visualization, Department of Radiology, Linköping University, Linköping, Sweden

Thorleif Etgen MD
Department of Neurology, Kliniken Südostbayern – Klinikum Traunstein, Traunstein, Germany; Department of Psychiatry & Psychotherapy, Technische Universität München, Munich, Germany
List of contributors

Bruce J. Fisch MD
Comprehensive Epilepsy Center and Neurodiagnostic Laboratories, Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA

Ariane Foret MSc
Cyclotron Research Centre, University of Liège, Liège, Belgium

Patrice Fort PhD
INSERM, U1028; CNRS, UMR5292; Physiopathology of the neuronal networks responsible for the sleep-waking cycle, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France

Steffen Gais PhD
Emmy Noether-Group "Memory Consolidation," General & Experimental Psychology, Ludwig Maximilians University Munich, Munich, Germany

Anne Germain PhD
Department of Psychiatry & Psychology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Jana Godau MD
Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Disorders (DZNE), University of Tübingen, Tübingen, Germany

Andrew L. Goertzen PhD MCCPM
Section of Nuclear Medicine, Health Sciences Centre and Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada

William A. Gomes MD PhD
Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA

Ronald M. Harper PhD
Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

Seung Bong Hong MD PhD
Department of Neurology, Epilepsy & Sleep Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Romy Hoque MD
Division of Sleep Medicine, Department of Neurology Louisiana State University School of Medicine, Shreveport, LA, USA

Scott A. Huettel PhD
Center for Interdisciplinary Decision Science, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA

Yuichi Inoue MD PhD
Department of Somnology, Tokyo Medical University, Tokyo, Japan

Alex Iranzo MD PhD
Neurology Service, Hospital Clinic, Institut d'Investigació Biomèdiques August Pi i Sunyer (IDIBAPS) & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain

Mathieu Jaspar MPsy
Cyclotron Research Centre, University of Liège, Liège, Belgium

Zayd Jedidi MD
Cyclotron Research Centre, University of Liège, Liège, Belgium

Alejandro Jiménez-Genchi MD
Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Tlalpan, México

Eun Yoon Joo MD PhD
Department of Neurology, Epilepsy & Sleep Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Gerhard Klösch MSc
Department of Neurology, Medical University of Vienna, Vienna, Austria

Karsten Krakow MD PhD
Asklepios Neurological Hospital Falkenstein, Königstein/Taunus, Germany

Rajesh Kumar PhD
Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

Caroline Kussé MSc
Cyclotron Research Centre, University of Liège, Liège, Belgium

Hans-Peter Landolt PhD
Institute of Pharmacology & Toxicology, University of Zürich; Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich; Neuroscience Center Zürich (ZNZ), University of Zürich and ETH Zürich, Zürich, Switzerland

Helmut Laufs MD
Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main; Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany

Jeffrey David Lewine PhD
The Mind Research Network and Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA

Camilo Libedinsky PhD
Neuroscience & Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael L. Lipton MD PhD</td>
<td>Gruss Magnetic Resonance Research Center; Departments of Radiology, Psychiatry &amp; Behavioral Sciences and Neuroscience, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA</td>
</tr>
<tr>
<td>Mordechai Lorberboym MD</td>
<td>Department of Nuclear Medicine, Edith Wolfson Medical Center, Holon, Israel</td>
</tr>
<tr>
<td>Cheng Luo PhD</td>
<td>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China</td>
</tr>
<tr>
<td>Pierre-Hervé Luppi PhD</td>
<td>INSERM, U1028; CNRS, UMR5292; Physiopathology of the neuronal networks responsible for the sleep-waking cycle, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France</td>
</tr>
<tr>
<td>Paul M. Macey PhD</td>
<td>School of Nursing; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA</td>
</tr>
<tr>
<td>Pierre Maquet MD PhD</td>
<td>Cyclotron Research Centre, University of Liège, Liège, Belgium</td>
</tr>
<tr>
<td>Laura Mascetti MSc</td>
<td>Cyclotron Research Centre, University of Liège, Liège, Belgium</td>
</tr>
<tr>
<td>Christelle Meyer MSc</td>
<td>Cyclotron Research Centre, University of Liège, Liège, Belgium</td>
</tr>
<tr>
<td>Sarah Moens MSc</td>
<td>Department of Sleep &amp; Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands</td>
</tr>
<tr>
<td>Vincenzo Muto MPsych</td>
<td>Cyclotron Research Centre, University of Liège, Liège, Belgium</td>
</tr>
<tr>
<td>Shadreck Mzenieza PhD</td>
<td>Winnipeg Cyclotron &amp; PET Radiochemistry Facility, Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada</td>
</tr>
<tr>
<td>Eric Nofzinger MD</td>
<td>Cerèves Inc., Allison Park, PA, USA</td>
</tr>
<tr>
<td>Takashi Nomura MD PhD</td>
<td>Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan</td>
</tr>
<tr>
<td>Daniela Perani MD</td>
<td>Vita-Salute San Raffaele University; Department of Nuclear Medicine &amp; Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy</td>
</tr>
<tr>
<td>Jennifer R. Ramautar PhD</td>
<td>Department of Sleep &amp; Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands</td>
</tr>
<tr>
<td>Bernd Saletu MD</td>
<td>Department of Psychiatry &amp; Psychotherapy, Medical University of Vienna, Vienna, Austria</td>
</tr>
<tr>
<td>Michael T. Saletu MD</td>
<td>Departments of Neurology; Department of Psychiatry &amp; Psychotherapy, Medical University of Vienna, Vienna, Austria</td>
</tr>
<tr>
<td>Gerda Saletu-Zyhlarz MD</td>
<td>Department of Psychiatry &amp; Psychotherapy, Medical University of Vienna, Vienna, Austria</td>
</tr>
<tr>
<td>Christina Schmidt PhD</td>
<td>Cyclotron Research Centre, University of Liège, Liège, Belgium; Centre for Chronobiology, Psychiatric University Clinics Basel, Basel, Switzerland</td>
</tr>
<tr>
<td>Monika Schönauer</td>
<td>Emmy Noether-Group “Memory Consolidation,” General &amp; Experimental Psychology, Ludwig Maximilians University Munich, Munich, Germany</td>
</tr>
<tr>
<td>Richard J. Schwab MD</td>
<td>Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA</td>
</tr>
<tr>
<td>Sophie Schwartz PhD</td>
<td>Department of Neuroscience, University of Geneva, Geneva, Switzerland</td>
</tr>
<tr>
<td>Keivan Shifteh MD</td>
<td>Division of Neuroradiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA</td>
</tr>
<tr>
<td>Sanjib Sinha MD DM</td>
<td>Department of Neurology, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India</td>
</tr>
<tr>
<td>Victor I. Spoormaker PhD</td>
<td>Max Planck Institute of Psychiatry, Munich, Germany</td>
</tr>
<tr>
<td>Ryan P. J. Stocker MA</td>
<td>Department of Counseling Psychology, Chatham University, Pittsburgh, PA, USA</td>
</tr>
<tr>
<td>A. Jon Stoessl CM MD FRCP, FAAN, FCAHS</td>
<td>Pacific Parkinson’s Research Center, University of British Columbia &amp; Vancouver Coastal Health, Vancouver, BC, Canada</td>
</tr>
<tr>
<td>Diederick Stoffers PhD</td>
<td>Department of Sleep &amp; Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands</td>
</tr>
</tbody>
</table>
A. B. Taly MD DM
Department of Neurology, National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India

Robert Joseph Thomas MD MMSc
Medicine-Division of Pulmonary, Critical Care & Sleep, Beth Israel Deaconess Medical Center, Boston, MA, USA

Michael J. Thorpy MD
Sleep-Wake Disorders Center, Montefiore Medical Center; Albert Einstein College of Medicine, Bronx, NY, USA

Emily Urry MSc
Institute of Pharmacology & Toxicology, University of Zürich; Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland

Jason Valerio MD MSc
Department of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada

Ysbrand D. Van Der Werf PhD
Department of Sleep & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, the Netherlands

Gilles Vandewalle PhD
Cyclotron Research Centre, University of Liège, Liège, Belgium

Hans P. A. Van Dongen PhD
Sleep & Performance Research Center, Washington State University, Spokane, WA, USA

Eus J. W. Van Someren PhD
Department of Sleep & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Department of Integrative Neurophysiology, VU University and Medical Center, Neuroscience Campus, Amsterdam, Amsterdam, the Netherlands

Vinod Venkatraman PhD
Department of Marketing, Fox School of Business, Temple University, Philadelphia, PA, USA

Frederic von Wegner MD
Clinic of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany

Thomas C. Wetter MD MA
Sleep Medicine Center, Department of Psychiatry & Psychotherapy, Medical University of Regensburg, Regensburg, Germany

Dezhong Yao PhD
Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
Foreword

The daily cycle of wake and sleep is a fundamental adaptation of vertebrates to their environment. Wake and sleep are each composed of two components. Wake is made up of active waking with an ongoing stimulus-response interaction, and quiet waking with reduced environmental interaction and activation of a set of specific cortical structures, often designated the default mode network. Sleep, long a biological mystery, became amenable to experimental investigation with the development of EEG. This was followed by a long and productive period in which REM sleep was characterized, demonstrating for the first time that sleep is an active process and that all components of sleep are more complex than had even vaguely been surmised. This left two important questions to be resolved. The first is the function of sleep. It was generally accepted that sleep was important, even essential, but how? The sledgehammer approach to the question was prolonged sleep deprivation over time, resulting in death of experimental animals and, in the human, a similar fate in fatal familial insomnia. In each instance, the events leading to death are similar and attributable to prolonged stress, not an informative result. Although these studies proved a point, the question, particularly for humans with our complex behavior dominated by language and verbal memory with the capacity for time binding, is not approachable by invasive experimental methods that can be used in animals. Equally important, how does the brain generate the complex states of sleep; how does this further inform us about adaptive waking behavior; and how are the brain mechanisms of wake and sleep affected in sleep disorders and other disease states?

Until relatively recently in this long saga, the answers to these questions were not approachable with the methodology available. There is an appropriate nineteenth-century German saying, **teknik ist alles** (technology is everything). Most major problems in neuroscience have been formulated long before answers are reached. In this case, solutions to the problem of understanding brain mechanisms of wake and sleep have become approachable using functional imaging methods that have evolved over the last 20 years. Advanced EEG methodology has provided functional maps, but a downside of this is that EEG analysis is restricted to surface cortex, a serious limitation. Other early techniques methods were Single Photon Emission Computerized Tomography (SPECT) and Positron Emission Tomography (PET). These have the shortcomings of limited spatial and temporal resolution. At the same time, structural and functional magnetic resonance imaging (MRI, fMRI) were developed, with an ongoing refinement of the technology. Another method with great potential, not yet fully realized, is Magnetoencephalography (MEG). The importance of these methods, particularly fMRI with its high spatial and temporal resolution, cannot be overemphasized. In another context, fMRI has become the essential methodology of cognitive neuroscience.

In this book, **Neuroimaging of Sleep and Sleep Disorders**, a detailed review is presented with a third allotted to methodology and data from normal individuals, and two-thirds to data from disease states. Three well-known authorities in the field are editors, and the authors also are well recognized for their work. No other publication is available that covers this topic and the topics covered are extremely broad. It might be argued that the field is so new, and growing so rapidly that this is not the time for such a book, but its very size rebuts that view. My judgment is that **Neuroimaging of Sleep and Sleep Disorders** is an invaluable compendium marking the status of the field as of 2013, and will be in every medical library and on the desk, near at hand, of every worker in the field.

Robert Y Moore, MD, PhD, MD (Hon)
Love Family Professor Emeritus
Department of Neurology
University of Pittsburgh
Preface

Sleep is still largely a mysterious state that is not well understood in terms of its function and purpose. New studies indicate that it is important not only for the brain, but also for the whole body, particularly as it regulates circadian gene activity that influences most body systems. In order to understand the physiology and pathophysiology of sleep, new techniques are being developed that include new imaging methods to tell us not only about the physical structure of brain regions that are activated or deactivated by sleep and alertness, but also to help us understand the neurotransmitter mechanisms involved. This book, Neuroimaging of Sleep and Sleep Disorders details the important advances in the imaging of sleep disorders that holds promise to help us understand the underlying physiology and pathophysiology of sleep that will also aid in the diagnosis of sleep disorders.

The chapters presented here represent the cumulative integrated knowledge to date from several key developments in science over the past six decades. First, since the 1950s, fuelled by seminal findings in the explorations of the nature of sleep, basic science research has led to a rich understanding of the neural underpinnings of the global states of consciousness defined largely by the EEG, including waking, NREM, and REM sleep. As a result of this research, sleep is no longer impervious to scientific study, but now is understood to be a rich tapestry and integration of discrete behavioral states, each with well-defined interactions in neural circuitry. Second, at the human level, sleep has been shown to play a fundamental role in human behavior, involving interactions between homeostatic, circadian, and cognitive functions. Third, a clinical field of sleep medicine has evolved that has defined how sleep is disrupted in humans, leading to significant detrimental impacts on function, resulting in human suffering. Much of this pathology and its manifestations involves how the brain functions either normally or abnormally in clinically recognized sleep disorders, such as the insomnias, sleep apnea, narcolepsy, and the parasomnias. Fourth, a field of cognitive neuroscience has flourished in which the brain is now understood, at its highest level of organization, to have regional brain specificity for particular behaviors and cognitive processes, such as motor behavior, sensory processing, thought, and emotion. Much of this new knowledge has come from brain imaging studies performed during waking. Fifth, there have been enormous technical developments in ways to “image” the human brain, at both the structural and functional levels, such as MR imaging, PET, and fMRI, making possible the testing of hypotheses at a regional brain level in relation to human behavior, health, and pathology. This book represents the first major overview of the wisdom generated from these cumulative scientific developments toward the study of sleep and sleep disorders.

No previous book has been published that focuses solely on neuroimaging of sleep and its disorders. This book accumulates the most recently available information on neuroimaging and is written by top specialists in the field: radiologists, sleep disorders physicians, and sleep researchers, from the USA, Europe, Canada, and Japan. The chapters are arranged in five major sections: an introduction; neuroimaging of sleep and wakefulness; neuroimaging of sleep loss and circadian misalignment; sleep and memory; and neuroimaging of the sleep disorders. The introductory section comprises chapters on the neurophysiology and the role of neuroimaging of sleep, with chapters on the fundamentals and methodology of imaging techniques. The second section specifically presents the neuroimaging of the sleep wake states, including NREM, REM, and wakefulness. Sections 3 and 4 discuss the role of neuroimaging in the understanding of sleep deprivation, and assessment of the functional responses to sleep deprivation, and how sleep is affected by circadian processes, as well as the assessment of memory by neuroimaging techniques. Section 5 presents the available information on neuroimaging of the sleep disorders, including insomnias, hypersomnias, narcolepsy, sleep-related breathing disorders, and parasomnias that includes several case presentations and the neuroimaging of alerting and sedative medications.

This volume is intended primarily for sleep disorder specialists, sleep researchers, and radiologists; however, it is suitable for neurologists, psychiatrists, and any professionals and researchers interested in the interdisciplinary field of sleep medicine. It will be of use to neurology, psychiatry and radiology residents and fellows, clinical psychologists, advanced
graduate medical students, neuropsychologists, house officers, and other mental health and social workers who want to get an understanding of the physiology of sleep and pathophysiological and diagnostic features of sleep disorders.

We are greatly indebted to all the authors who have contributed to this book and are appreciative of the help from the staff of the University of Cambridge Press in getting this book in print so quickly, so that the contents are up to date and current. As findings in this area are rapidly advancing, it is anticipated that future editions of this volume, Neuroimaging of Sleep and Sleep Disorders, will take these developments into account.

Eric, Pierre, and Michael