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2 OSCILLATIONS

You don’t know anything about trigonometry? That’s OK, I’ll teach you all you need to
know as we go along. I will introduce summation notation, but explain it. If you know
how to integrate, that might be an asset, but it is not strictly necessary as I will give you a
visual description of what is involved. This should allow you to appreciate the meaning
of the equations even if you do not have a full grasp of the apparatus of integration.

In this chapter we meet oscillations. We will look at the general way to describe any
oscillation using mathematics.

To describe an oscillation in mathematical terms, we identify three key properties:
how rapid it is, how large it is and when it starts. These three properties are more for-
mally defined as frequency, amplitude and initial phase. We can express an oscillation
mathematically by using a trigonometric function such as cosine or sine or by using a
compact exponential notation involving complex numbers.

The time-bandwidth theorem appears over and over again in terahertz physics. It says
that the product of the duration of a pulse (time) and the range of frequencies encom-
passed in the pulse (bandwidth) has a minimum value. Looked at in one way, if we
have a short pulse, the pulse must involve a large range of frequencies. Looked at in an-
other way, a well-defined frequency implies a very long pulse. This profound yet simple
concept has wide-ranging ramifications in the production, detection and application of
terahertz-frequency electromagnetic radiation.

Fourier methods play a huge role in modern physics and engineering. Here is the ba-
sic concept in a nutshell: an arbitrary oscillation can be constructed from fundamental
oscillations. The Fourier method can be applied coming or going. In Fourier synthesis,
one or more fundamental oscillations are added together to produce the final desired
oscillation (which can be more or less anything you want). In Fourier analysis, a given,
and possibly quite complicated, oscillation is broken up into its constituent fundamental
oscillations. Both Fourier synthesis and Fourier analysis find many applications in tera-
hertz physics. A good appreciation of their power is essential; an appreciation of their
beauty is optional.

Learning goals

There are three important things I want you to know by the time you finish this chapter:

● how to describe oscillations in mathematical terms,
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4 OSCILLATIONS

● the meaning of the time-bandwidth theorem,
● the importance of Fourier methods.

2.1 Describing oscillations

Let us start with a very simple example. About the simplest oscillation I can think of is
something turning on and off. Something like a flashing light. The sequence on, off, on,
off, on, off, on, repeats over and over.

Figure 2.1 represents graphically the very simple oscillation of a light switching on
and off.

Let us observe first that the phenomenon I have chosen to describe is periodic: the
same thing keeps happening over and over again. The prime characteristic of this phe-
nomenon is its frequency (Figure 2.1a). The frequency is the number of oscillations per
unit time. In this example the frequency happens to be 5 oscillations per minute. This
frequency corresponds to the light being on for 6 seconds, then off for 6 seconds, and
so on (Figure 2.1b).

Let us now elaborate on this example a little. Let us now consider measuring the
amount of light more accurately, rather than just saying the light is ‘on’ or ‘off’. Let’s
say we found a meter and measured the light to produce an illuminance of 100 lux.
Then we could represent the oscillation more fully as in Figure 2.1c and Figure 2.1d,
where a label is added to each vertical axis to denote the size of the oscillation. The
size of the oscillation is its amplitude. More precisely, the amplitude is measured as
the swing above and below the average value of the oscillation. In this example, the
average value is 50 lux, and the illuminance swings 50 lux above and below this. So
the amplitude is formally defined as 50 lux in this example (Figure 2.1d), not 100 lux.
The amplitude has units that depend on the quantity being measured. For example, the
temperature in a room might be oscillating and the amplitude would then be measured
in temperature units, such as Celsius degrees. In the case of terahertz phenomena we are
often interested in the amplitude of an electric field, and this is measured in the units of
volts per metre.

Now look at Figure 2.1e and Figure 2.1f, where a different oscillation is shown. This
second oscillation corresponds to a second light being turned off and on repeatedly.
The oscillation in Figure 2.1e/f differs from the oscillation in Figure 2.1c/d in three
key respects. Pay attention, for these are the three fundamental characteristics of an
oscillation. First, the two oscillations differ in frequency. We have seen already that the
first oscillation has a rate or frequency of 5 per minute. The second oscillation has a
rate of 3 per minute (Figure 2.1e). This smaller rate corresponds to a greater time for
the second lamp being turned on and off; it is off for 10 seconds, on for 10 seconds, and
so on (Figure 2.1f). Second, the two oscillations differ in size, in amplitude. We have
seen already that the first oscillation has an amplitude of 50 lux. The second oscillation
has an amplitude of 150 lux. Third, the two oscillations start at different points. Taking
the far left of Figure 2.1d and of Figure 2.1f to be the beginning of our measurement,
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2.1 Describing oscillations 5
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Figure 2.1 Describing oscillations. The figure introduces the three key properties of an
oscillation: frequency, amplitude and initial phase. These properties are illustrated in both the
frequency domain (left-hand side of the figure) and in the time domain (right-hand side of the
figure). Panel (a) represents an occurrence with a frequency of 5 times per minute, such as (b) a
light being repeatedly turned on for 6 seconds then off for 6 seconds. Panels (c) and (d) now
specify the amplitude of the phenomena – the light provides an illuminance of 100 lux. (A lamp
in your house might give this much illumination.) Panels (e) and (f) represent another light,
giving an illuminance of 300 lux, first being turned off for 10 seconds, then on for 10 seconds,
and so on. This oscillation differs from the previous oscillation in all three key characteristics of
frequency, amplitude, and initial phase.

we see the first oscillation starts at the value of 100 lux, whereas the second starts at
the value of zero. Had we only one oscillation, we may not have noticed this subtlety,
but with two oscillations, we see they are out of step at the outset. The initial phase
tells us where we are along the complete cycle of an oscillation at a reference time. The
reference time usually chosen is the time when the measurement begins. Seeing the two
oscillations helps us recognise there is a difference in initial phase, but we do not need
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6 OSCILLATIONS

two oscillations; we can define initial phase for a single oscillation by noting how far
along a complete cycle we are at the reference time. I have been assuming that the first
oscillation has zero phase, meaning that I count the oscillation as beginning when the
light is switched on. I have not explicitly shown this zero initial phase in Figure 2.1c.
The second light is halfway through its cycle when we start the measurement (Figure
2.1f); we have to wait 10 seconds, or half a cycle, before it is switched on. I count this
as being completely out of phase. The phase of the second oscillation is indicated on a
second vertical axis in Figure 2.1e.

We can choose to describe oscillations in the frequency domain (the left-hand side
of Figure 2.1). In the frequency domain, we see explicitly what different frequencies
are present, their relative amplitudes and initial phases. Alternately, we may describe
oscillations in the time domain (the right-hand side of Figure 2.1). Oscillations shown
in the frequency domain and the time domain amount to the same thing; equivalent
information is in each representation. However, depending on our purpose, working in
one or other domain may prove to be more convenient. This book is about phenomena
characterised by particular (terahertz) frequencies, so prepare to spend some time in the
(terahertz) frequency domain.

Let us now turn to a smoother example. A common form of periodic motion is rota-
tion. We will start with the simplest version of rotation – motion on the simplest curve
(the circle) and at the simplest rate (evenly). Such motion is called uniform circular
motion. I expect you have studied uniform circular motion previously but it doesn’t
matter if you haven’t. To a reasonable approximation, uniform circular motion may be
used to describe the motion of the earth around the sun, or the motion of an electron
around a proton in a hydrogen atom. Uniform circular motion is easy to grasp. In Figure
2.2a I show uniform circular motion by representing a particle moving in – you guessed
it – a circle, and at – wait for it – a steady speed.

The situation is very simple, as described first in words (uniform circular motion) then
described in a picture (Figure 2.2a). We may also describe this situation very simply
using a third language, mathematics. Let’s call the angle through which the particle has
moved around the circle theta, θ. The first symbol I think of when I think of an angle is
θ, so that is what I use here. Throughout the book, θ is employed as a general-purpose
angle. We will measure the angle in radians. If you have not previously met the radian,
abbreviated rad, all you need to know is it is used to measure angles around a circle,
and moving once around the circle amounts to 2π radians (Figure 2.2b). More details on
angles and their measurement can be found in Appendix C. Of course, as the particle is
moving, the angle is always changing. But as the particle is moving uniformly, the angle
is changing at a steady rate. Let’s call this steady rate of angular change ω. Assuming
we start with θ being zero at time zero then at time t

θ = ωt. (2.1)

This relationship is illustrated in Figure 2.2c. For example, if the rate of change of angle
θ is one twelfth of a circle per second, or 2π/12 = π/6 radians per second, after 1, 2 and

Cambridge University Press
978-1-107-01857-0 - Terahertz Physics
R. A. Lewis
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9781107018570
http://www.cambridge.org
http://www.cambridge.org


2.1 Describing oscillations 7
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Figure 2.2 Uniform circular motion. (a) Motion at a steady rate around a circular path, in other
words, uniform circular motion. (b) In a time interval t, motion at the steady angular rate of ω
results in an angle of θ = ωt being traversed. Here t is measured in seconds, ω is in radians per
second and θ is in radians. The time taken to complete one lap of the circle is the period, T , and
is measured in seconds. The period is directly related to the number of laps per second, or
frequency, f , by f = 1/T . Frequency has units of hertz. The idea of laps per second may be
expressed in terms of radians per second; there are 2π radians in one lap. The angular frequency
is then ω = 2π/T = 2π f . (c) Defining the trigonometric functions cosine and sine. (d, e) Uniform
circular motion projected onto two perpendicular axes. (f) If the motion does not start at the
usual origin, this is accommodated by an initial phase δ. The phase, φ, takes into account both
the motion described previously (θ) and the initial phase (δ); φ = θ + δ.

3 seconds, the particle will have moved one twelfth, then two twelfths (one sixth) and
finally three twelfths (one quarter) of the way around the circle, Figure 2.2c.

Once the angle changes by a full circle, or θ = 2π, the motion starts again. Putting
θ = 2π into Equation (2.1), the time taken for one complete oscillation is 2π/ω. Since
the frequency is the inverse of the time taken for one complete oscillation, f = ω/2π.
Making ω the subject of the formula,

ω = 2π f . (2.2)
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8 OSCILLATIONS

We callω the angular frequency. (Earlier I called this the steady rate of angular change;
it amounts to the same thing.) Rather than express θ in terms of angular frequency we
can express it in terms of frequency by substituting Equation (2.2) into Equation (2.1):

θ = 2π f t. (2.3)

By definition, being always on the circle, the distance from the centre of the circle is
always the same. We will call this distance R.

R = constant. (2.4)

The two-dimensional (or plane) motion about a centre (or pole) is conveniently ex-
pressed in the plane-polar coordinates, R and θ, as introduced in Equations (2.4) and
(2.1).

In many circumstances, we like to have coordinates straight and true: not the mongrel
distance and angle of the plane-polar system. We want to work in Cartesian rectangular
coordinates, x and y. So our task is now to express the position of the particle at any
time in x and y coordinates. Let us break up this job into two parts, first the x coordinate,
then the y. To begin with (in other words, when time t = 0), the particle is actually on
the x axis, and a distance R from the centre of the circle (the origin of the x-y axis
system). So the x component is R. After the particle has moved through π/3 radians,
which happens after 2 seconds in our example, the x component is R/2. (You could take
my word for it, or measure it.) We could do the same for every angle – write down the
projection onto the x axis (Figure 2.2e). Doing this produces the cosine function. In
mathematical shorthand,

x = R cos θ. (2.5)

If you have never met the cosine function before, note that this equation defines it. In
words, for a given angle of rotation anticlockwise around a circle starting at the x axis,
the cosine function gives the projection of the position onto the x axis (as a proportion
of the radius). In a similar way, we can write the y component as

y = R sin θ. (2.6)

In words, the sine function gives the y projection of the particle position as a proportion
of the radius (Figure 2.2d). More detail about the cosine and sine functions is given in
Appendix C.

If we want to show the time dependence explicitly, we may use Equation (2.1) to
write

x = R cosωt and y = R sinωt, (2.7)

or Equation (2.3) to write

x = R cos 2π f t and y = R sin 2π f t. (2.8)

If we are only interested in the projection along a particular axis, we can use one (or
other) of these two equations. Some prefer the cosine expression, and refer to cosinu-
soidal oscillations. Some prefer the sine expression, and refer to sinusoidal oscillations.
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2.1 Describing oscillations 9

It really amounts to the same thing, as the cosine function and the sine function differ
only by a rotation of one-quarter of a circle, in other words, by π/2 radians (Appendix
C):

cos θ = sin(θ + π/2). (2.9)

Thus, we may say cosine and sine differ only in initial phase. This is illustrated in Figure
2.2d/e. If we count the oscillation as beginning with the value 1 and decreasing from
there, the cosine function is in phase and the sine function is one-quarter cycle, or π/2
radians, out of phase.

The discussion about the similarity between cosine and sine, apart from the starting
point, brings us to the relatively minor matter of dealing with motion that does not start
on the x axis at t = 0. We may regard this as either an offset in time or an offset in angle.
(An example is the alternate starting point in Figure 2.2f.) The offset angle, δ, is how
we will usually express initial phase from now on. This offset in angle corresponds to
an offset in time, which we will denote by tδ. The relation between the two quantities is

δ = ωtδ. (2.10)

(This may be seen to follow from Equation (2.1).) The x value of an oscillation of
initial phase δ (such as the oscillation shown in Figure 2.2f measured from the alternate
starting point) may be represented by

x = R cos(ωt + δ) = R cos(2π f t + δ). (2.11)

The argument of a trigonometric function is called the phase and denoted φ. Note that
the phase, φ, is distinct from the initial phase, δ. Here the phase is the argument of the
cosine function,

φ = ωt + δ = 2π f t + δ. (2.12)

Using this expression for phase we can write Equation (2.11) as

x = R cosφ, (2.13)

putting it into exactly the same form as Equation (2.5).
So far, the physical quantity we have been focussing on has been the position in

space. We can extend the idea of oscillations to other quantities, such as temperature, or
pressure, or electric field. Using A to represent a general quantity and A0 the amplitude
of that quantity, we can write a harmonic oscillation in general as

A = A0 cos(ωt + δ) = A0 cos(2π f t + δ). (2.14)

Note that A and A0 have the same dimensions so that the equation balances.
To sum up, the three main characteristics of an oscillation are its frequency, its ampli-

tude and its initial phase. In mathematical terms, beginning from the idea of motion in
a circle, we may write these three key parameters for circular, or harmonic oscillations
as
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10 OSCILLATIONS

Frequency f hertz (2.15)

Amplitude A0 (units pertinent to the oscillation) (2.16)

Initial phase δ radians (2.17)

A general mathematical form to represent any harmonic oscillation is then:

A = A0 cos(2π f t + δ) = A0 cosφ. (2.18)

The constants are A0, f and δ, the three characteristics of the oscillation; the vari-
able is the time, t; these four quantities are related to the size of the oscillation via the
trigonometric function cosine. The phase, φ, incorporates the change with time, 2π f t,
and the initial phase, δ.

Example 2.1 The unit diamond

(This example assumes a knowledge of trigonometry. You can skip it if your trigono-
metric knowledge is weak or non-existent.) The definitions of cosine and sine were
introduced in Figure 2.2 based on motion in a circular path. In a similar fashion, other
functions may be defined based on motion along other paths. Consider motion along a
unit diamond (Figure 2.3a); that is, a set of four straight lines running from (1, 0) to
(0, 1), to (−1, 0), to (0, −1) and back to (1, 0). Give an expression for the projection
of a position on the unit diamond onto the y axis as a function of angle θ (measured
anticlockwise from the x axis). Also give an expression for the projection onto the x
axis.

(a) (b) (c)

Figure 2.3 (a) The unit diamond. (b) The unit circle. (c) The unit square. The figures cross the
axes at a unit distance from the origin.
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