Bayesian inference has become a standard method of analysis in many fields of science. Students and researchers in experimental psychology and cognitive science, however, have failed to take full advantage of the new and exciting possibilities that the Bayesian approach affords. Ideal for teaching and self study, this book demonstrates how to do Bayesian modeling. Short, to-the-point chapters offer examples, exercises, and computer code (using WinBUGS or JAGS, and supported by Matlab and R), with additional support available online. No advance knowledge of statistics is required and, from the very start, readers are encouraged to apply and adjust Bayesian analyses by themselves. The book contains a series of chapters on parameter estimation and model selection, followed by detailed case studies from cognitive science. After working through this book, readers should be able to build their own Bayesian models, apply the models to their own data, and draw their own conclusions.

Michael D. Lee is a professor in the Department of Cognitive Sciences at the University of California, Irvine.

Eric-Jan Wagenmakers is a professor in the Department of Psychological Methods at the University of Amsterdam.
Contents

Preface
Acknowledgements

Part I Getting started

1. **The basics of Bayesian analysis**
 1.1 General principles
 1.2 Prediction
 1.3 Sequential updating
 1.4 Markov chain Monte Carlo
 1.5 Goal of this book
 1.6 Further reading

2. **Getting started with WinBUGS**
 2.1 Installing WinBUGS, Matbugs, R, and R2WinBugs
 2.2 Using the applications
 2.3 Online help, other software, and useful URLs

Part II Parameter estimation

3. **Inferences with binomials**
 3.1 Inferring a rate
 3.2 Difference between two rates
 3.3 Inferring a common rate
 3.4 Prior and posterior prediction
 3.5 Posterior prediction
 3.6 Joint distributions

4. **Inferences with Gaussians**
 4.1 Inferring a mean and standard deviation
 4.2 The seven scientists
 4.3 Repeated measurement of IQ
Contents

5 Some examples of data analysis 60
 5.1 Pearson correlation 60
 5.2 Pearson correlation with uncertainty 62
 5.3 The kappa coefficient of agreement 65
 5.4 Change detection in time series data 68
 5.5 Censored data 70
 5.6 Recapturing planes 73

6 Latent-mixture models 77
 6.1 Exam scores 77
 6.2 Exam scores with individual differences 79
 6.3 Twenty questions 82
 6.4 The two-country quiz 84
 6.5 Assessment of malingering 88
 6.6 Individual differences in malingering 90
 6.7 Alzheimer’s recall test cheating 93

Part III Model selection 99

7 Bayesian model comparison 101
 7.1 Marginal likelihood 101
 7.2 The Bayes factor 104
 7.3 Posterior model probabilities 106
 7.4 Advantages of the Bayesian approach 107
 7.5 Challenges for the Bayesian approach 110
 7.6 The Savage–Dickey method 113
 7.7 Disclaimer and summary 116

8 Comparing Gaussian means 118
 8.1 One-sample comparison 119
 8.2 Order-restricted one-sample comparison 121
 8.3 Two-sample comparison 124

9 Comparing binomial rates 127
 9.1 Equality of proportions 127
 9.2 Order-restricted equality of proportions 129
 9.3 Comparing within-subject proportions 132
 9.4 Comparing between-subject proportions 136
 9.5 Order-restricted between-subjects comparison 139
Contents

Part IV Case studies

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Memory retention</td>
<td>143-152</td>
</tr>
<tr>
<td>10.1</td>
<td>No individual differences</td>
<td>145</td>
</tr>
<tr>
<td>10.2</td>
<td>Full individual differences</td>
<td>149</td>
</tr>
<tr>
<td>10.3</td>
<td>Structured individual differences</td>
<td>152</td>
</tr>
<tr>
<td>11</td>
<td>Signal detection theory</td>
<td>156-164</td>
</tr>
<tr>
<td>11.1</td>
<td>Signal detection theory</td>
<td>156</td>
</tr>
<tr>
<td>11.2</td>
<td>Hierarchical signal detection theory</td>
<td>161</td>
</tr>
<tr>
<td>11.3</td>
<td>Parameter expansion</td>
<td>164</td>
</tr>
<tr>
<td>12</td>
<td>Psychophysical functions</td>
<td>168-172</td>
</tr>
<tr>
<td>12.1</td>
<td>Psychophysical functions</td>
<td>168</td>
</tr>
<tr>
<td>12.2</td>
<td>Psychophysical functions under contamination</td>
<td>172</td>
</tr>
<tr>
<td>13</td>
<td>Extrasensory perception</td>
<td>176-184</td>
</tr>
<tr>
<td>13.1</td>
<td>Evidence for optional stopping</td>
<td>177</td>
</tr>
<tr>
<td>13.2</td>
<td>Evidence for differences in ability</td>
<td>180</td>
</tr>
<tr>
<td>13.3</td>
<td>Evidence for the impact of extraversion</td>
<td>184</td>
</tr>
<tr>
<td>14</td>
<td>Multinomial processing trees</td>
<td>187-190</td>
</tr>
<tr>
<td>14.1</td>
<td>Multinomial processing model of pair-clustering</td>
<td>187</td>
</tr>
<tr>
<td>14.2</td>
<td>Latent-trait MPT model</td>
<td>190</td>
</tr>
<tr>
<td>15</td>
<td>The SIMPLE model of memory</td>
<td>196-201</td>
</tr>
<tr>
<td>15.1</td>
<td>The SIMPLE model</td>
<td>196</td>
</tr>
<tr>
<td>15.2</td>
<td>A hierarchical extension of SIMPLE</td>
<td>201</td>
</tr>
<tr>
<td>16</td>
<td>The BART model of risk taking</td>
<td>206-209</td>
</tr>
<tr>
<td>16.1</td>
<td>The BART model</td>
<td>207</td>
</tr>
<tr>
<td>16.2</td>
<td>A hierarchical extension of the BART model</td>
<td>209</td>
</tr>
<tr>
<td>17</td>
<td>The GCM model of categorization</td>
<td>212-218</td>
</tr>
<tr>
<td>17.1</td>
<td>The GCM model</td>
<td>212</td>
</tr>
<tr>
<td>17.2</td>
<td>Individual differences in the GCM</td>
<td>216</td>
</tr>
<tr>
<td>17.3</td>
<td>Latent groups in the GCM</td>
<td>218</td>
</tr>
<tr>
<td>18</td>
<td>Heuristic decision-making</td>
<td>224-234</td>
</tr>
<tr>
<td>18.1</td>
<td>Take-the-best</td>
<td>224</td>
</tr>
<tr>
<td>18.2</td>
<td>Stopping</td>
<td>227</td>
</tr>
<tr>
<td>18.3</td>
<td>Searching</td>
<td>230</td>
</tr>
<tr>
<td>18.4</td>
<td>Searching and stopping</td>
<td>234</td>
</tr>
<tr>
<td>19 Number concept development</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>19.1 Knower-level model for Give-N</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>19.2 Knower-level model for Fast-Cards</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>19.3 Knower-level model for Give-N and Fast-Cards</td>
<td>247</td>
<td></td>
</tr>
</tbody>
</table>

References 252

Index 263
For Colleen and David, and Helen and Mitchell — Michael
This book, together with the code, answers to questions, and other material at www.bayesmodels.com, teaches you how to do Bayesian modeling. Using modern computer software—and, in particular, the WinBUGS program—this turns out to be surprisingly straightforward. After working through the examples provided in this book, you should be able to build your own models, apply them to your own data, and draw your own conclusions.

This book is based on three principles. The first is that of accessibility: the book’s only prerequisite is that you know how to operate a computer; you do not need any advanced knowledge of statistics or mathematics. The second principle is that of applicability: the examples in this book are meant to illustrate how Bayesian modeling can be useful for problems that people in cognitive science care about. The third principle is that of practicality: this book offers a hands-on, “just do it” approach that we feel keeps students interested and motivated.

In line with these three principles, this book has little content that is purely theoretical. Hence, you will not learn from this book why the Bayesian philosophy to inference is as compelling as it is; neither will you learn much about the intricate details of modern sampling algorithms such as Markov chain Monte Carlo, even though this book could not exist without them.

The goal of this book is to facilitate and promote the use of Bayesian modeling in cognitive science. As shown by means of examples throughout this book, Bayesian modeling is ideally suited for applications in cognitive science. It is easy to construct a basic model, and then add individual differences, add substantive prior information, add covariates, add a contaminant process, and so on. Bayesian modeling is flexible and respects the complexities that are inherent in the modeling of cognitive phenomena.

We hope that after completing this book, you will have gained not only a new understanding of statistics (yes, it can make sense), but also the technical skills to implement statistical models that professional but non-Bayesian cognitive scientists dare only dream about.

Michael D. Lee
Irvine, USA

Eric-Jan Wagenmakers
Amsterdam, The Netherlands
Acknowledgements

The plan to produce this book was hatched in 2006. Since then, the core material has undergone a steady stream of additions and revisions. The revisions were inspired in part by students and colleagues who relentlessly suggested improvements, pointed out mistakes, and attended us to inconsistencies and inefficiencies. We would especially like to thank Ryan Bennett, Adrian Brasoveanu, Eddy Davelaar, Joram van Driel, Wouter Kruijne, Alexander Ly, John Miyamoto, James Negen, Thomas Palmeri, James Pooley, Don van Ravenzwaaij, Hedderik van Rijn, J. P. de Ruiter, Anja Sommavilla, Helen Steingroever, Wolf Vanpaemel, and Ruud Wetzels for their constructive comments and contributions. We are particularly grateful to Dora Matzke for her help in programming and plotting. Any remaining mistakes are the sole responsibility of the authors. A list of corrections and typographical errors will be available on www.bayesmodels.com. When you spot a mistake or omission that is not on the list please do not hesitate to email us at BayesModels@gmail.com.

The material in this book is not independent of our publications in the cognitive science literature. Sometimes, an article was turned into a book chapter; at other times, a book chapter spawned an article. Here we would like to acknowledge our published articles that contain text and figures resembling, to varying degrees, those used in this book. These articles often may be consulted for a more extensive and formal exposition of the material at hand.

Chapter 1: The basics of Bayesian analysis

Chapter 6: Latent-mixture models

Chapter 7: Bayesian model comparison

Chapter 8: Comparing Gaussian means

Chapter 9: Comparing binomial rates

Chapter 10: Memory retention

Chapter 11: Signal detection theory

Chapter 13: Extrasensory perception

Chapter 14: Multinomial processing trees

Chapter 15: The SIMPLE model of memory

Chapter 16: The BART model of risk taking

Chapter 17: Generalized context model

Chapter 18: Heuristic decision-making

Chapter 19: Number concept development