
PART I

GETTING STARTED

[T]he theory of probabilities is basically just common sense reduced to
calculus; it makes one appreciate with exactness that which accurate
minds feel with a sort of instinct, often without being able to account
for it.

Laplace, 1829
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1 The basics of Bayesian analysis

1.1 General principles

The general principles of Bayesian analysis are easy to understand. First, uncer-
tainty or “degree of belief” is quantified by probability. Second, the observed data
are used to update the prior information or beliefs to become posterior information
or beliefs. That’s it!

To see how this works in practice, consider the following example. Assume you
are given a test that consists of 10 factual questions of equal difficulty. What we
want to estimate is your ability, which we define as the rate θ with which you
answer questions correctly. We cannot directly observe your ability θ. All that we
can observe is your score on the test.

Before we do anything else (for example, before we start to look at your data) we
need to specify our prior uncertainty with respect to your ability θ. This uncertainty
needs to be expressed as a probability distribution, called the prior distribution.
In this case, keep in mind that θ can range from 0 to 1, and that we do not know
anything about your familiarity with the topic or about the difficulty level of the
questions. Then, a reasonable “prior distribution,” denoted by p (θ), is one that
assigns equal probability to every value of θ. This uniform distribution is shown by
the dotted horizontal line in Figure 1.1.

Now we consider your performance, and find that you answered 9 out of 10
questions correctly. After having seen these data, the updated knowledge about
θ is described by the posterior distribution, denoted p (θ | D), where D indicates
the observed data. This distribution expresses the uncertainty about the value of
θ, quantifying the relative probability that each possible value is the true value.
Bayes’ rule specifies how we can combine the information from the data—that is,
the likelihood p (D | θ)—with the information from the prior distribution p (θ), to
arrive at the posterior distribution p (θ | D):

p (θ | D) =
p (D | θ) p (θ)

p(D)
. (1.1)

This equation is often verbalized as

posterior =
likelihood × prior

marginal likelihood
. (1.2)

Note that the marginal likelihood (i.e., the probability of the observed data) does
not involve the parameter θ, and is given by a single number that ensures that
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4 The basics of Bayesian analysis
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�Fig. 1.1 Bayesian parameter estimation for rate parameter θ, after observing 9 correct

responses and 1 incorrect response. The mode of the posterior distribution for θ is

0.9, equal to the maximum likelihood estimate (MLE), and the 95% credible interval

extends from 0.59 to 0.98.

the area under the posterior distribution equals 1. Therefore, Equation 1.1 is often
written as

p (θ | D) ∝ p (D | θ) p (θ) , (1.3)

which says that the posterior is proportional to the likelihood times the prior. Note
that the posterior distribution is a combination of what we knew before we saw the
data (i.e., the information in the prior distribution), and what we have learned from
the data. In particular, note that the new information provided by the data has
reduced our uncertainty about the value of θ, as shown by the posterior distribution
being narrower than the prior distribution.

The solid line in Figure 1.1 shows the posterior distribution for θ, obtained when
the uniform prior is updated with the data. The central tendency of a posterior
distribution is often summarized by its mean, median, or mode. Note that with
a uniform prior, the mode of a posterior distribution coincides with the classical
maximum likelihood estimate or MLE , θ̂ = k/n = 0.9 (Myung, 2003). The spread
of a posterior distribution is most easily captured by a Bayesian x% credible interval
that extends from the (100−x)/2th to the (100+x)/2th percentile of the posterior
distribution. For the posterior distribution in Figure 1.1, a 95% Bayesian credible
interval for θ extends from 0.59 to 0.98. In contrast to the orthodox confidence
interval, this means that one can be 95% confident that the true value of θ lies in
between 0.59 and 0.98.
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5 Prediction

Exercises

Exercise 1.1.1 The famous Bayesian statistician Bruno de Finetti published two
big volumes entitled Theory of Probability (de Finetti, 1974). Perhaps surpris-
ingly, the first volume starts with the words “probability does not exist.” To
understand why de Finetti wrote this, consider the following situation: some-
one tosses a fair coin, and the outcome will be either heads or tails. What
do you think the probability is that the coin lands heads up? Now suppose
you are a physicist with advanced measurement tools, and you can establish
relatively precisely both the position of the coin and the tension in the mus-
cles immediately before the coin is tossed in the air—does this change your
probability? Now suppose you can briefly look into the future (Bem, 2011),
albeit hazily. Is your probability still the same?

Exercise 1.1.2 On his blog, prominent Bayesian Andrew Gelman wrote (March
18, 2010): “Some probabilities are more objective than others. The probability
that the die sitting in front of me now will come up ‘6’ if I roll it . . . that’s
about 1/6. But not exactly, because it’s not a perfectly symmetric die. The
probability that I’ll be stopped by exactly three traffic lights on the way to
school tomorrow morning: that’s well, I don’t know exactly, but it is what
it is.” Was de Finetti wrong, and is there only one clearly defined probabil-
ity of Andrew Gelman encountering three traffic lights on the way to school
tomorrow morning?

Exercise 1.1.3 Figure 1.1 shows that the 95% Bayesian credible interval for θ

extends from 0.59 to 0.98. This means that one can be 95% confident that
the true value of θ lies between 0.59 and 0.98. Suppose you did an ortho-
dox analysis and found the same confidence interval. What is the orthodox
interpretation of this interval?

Exercise 1.1.4 Suppose you learn that the questions are all true or false questions.
Does this knowledge affect your prior distribution? And, if so, how would this
prior in turn affect your posterior distribution?

1.2 Prediction

The posterior distribution θ contains all that we know about the rate with which
you answer questions correctly. One way to use the knowledge is prediction.

For example, suppose you are confronted with a new set of 5 questions, all of the
same difficulty as before. How can we formalize our expectations about your perfor-
mance on this new set? In other words, how can we use the posterior distribution
p (θ | n = 10, k = 9)—which, after all, represents everything that we know about θ

from the old set—to predict the number of correct responses out of the new set of
nrep = 5 questions? The mathematical solution is to integrate over the posterior,
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6 The basics of Bayesian analysis

∫
p (krep | θ, nrep = 5) p (θ | n = 10, k = 9) dθ, where krep is the predicted number

of correct responses out of the additional set of 5 questions.
Computationally, you can think of this procedure as repeatedly drawing a random

value θi from the posterior, and using that value to every time determine a single
krep. The end result is p (krep), the posterior predictive distribution of the possible
number of correct responses in the additional set of 5 questions. The important
point is that by integrating over the posterior, all predictive uncertainty is taken
into account.

Exercise

Exercise 1.2.1 Instead of “integrating over the posterior,” orthodox methods of-
ten use the “plug-in principle.” In this case, the plug-in principle suggests that
we predict p(krep) solely based on θ̂, the maximum likelihood estimate. Why
is this generally a bad idea? Can you think of a specific situation in which
this may not be so much of a problem?

1.3 Sequential updating

Bayesian analysis is particularly appropriate when you want to combine different
sources of information. For example, assume that you are presented with a new
set of 5 questions of equal difficulty. You answer 3 out of 5 correctly. How can we
combine this new information with the old? Or, in other words, how do we update
our knowledge of θ? Consistent with intuition, Bayes’ rule entails that the prior
that should be updated based on your performance for the new set is the posterior
that was obtained based on your performance for the old set. Or, as Lindley put it,
“today’s posterior is tomorrow’s prior” (Lindley, 1972, p. 2).

When all the data have been collected, however, the order in which this was done
is irrelevant. The results from the 15 questions could have been analyzed as a single
batch; they could have been analyzed sequentially, one-by-one; they could have been
analyzed by first considering the set of 10 questions and next the set of 5, or vice
versa. For all these cases, the end result, the final posterior distribution for θ, is
identical. Given the same available information, Bayesian inference reaches the same
conclusion, independent of the order in which the information was obtained. This
again contrasts with orthodox inference, in which inference for sequential designs
is radically different from that for non-sequential designs (for a discussion, see, for
example, Anscombe, 1963).

Thus, a posterior distribution describes our uncertainty with respect to a pa-
rameter of interest, and the posterior is useful—or, as a Bayesian would have it,
necessary—for probabilistic prediction and for sequential updating. To illustrate,
in the case of our binomial example the uniform prior is a beta distribution with
parameters α = 1 and β = 1, and when combined with the binomial likelihood
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7 Markov chain Monte Carlo

this yields a posterior that is also a beta distribution, with parameters α + k and
β +n−k. In simple conjugate cases such as these, where the prior and the posterior
belong to the same distributional family, it is possible to obtain analytical solutions
for the posterior distribution, but in many interesting cases it is not.

1.4 Markov chain Monte Carlo

In general, the posterior distribution, or any of its summary measures, can only
be obtained analytically for a restricted set of relatively simple models. Thus, for
a long time, researchers could only proceed easily with Bayesian inference when
the posterior was available in closed-form or as a (possibly approximate) analytic
expression. As a result, practitioners interested in models of realistic complexity
did not much use Bayesian inference. This situation changed dramatically with
the advent of computer-driven sampling methodology, generally known as Markov
chain Monte Carlo (MCMC: e.g., Gamerman & Lopes, 2006; Gilks, Richardson,
& Spiegelhalter, 1996). Using MCMC techniques such as Gibbs sampling or the
Metropolis–Hastings algorithm, researchers can directly sample sequences of values
from the posterior distribution of interest, forgoing the need for closed-form analytic
solutions. The current adage is that Bayesian models are limited only by the user’s
imagination.

In order to visualize the increased popularity of Bayesian inference, Figure 1.2
plots the proportion of articles that feature the words “Bayes” or “Bayesian,” ac-
cording to Google Scholar (for a similar analysis for specific journals in statistics
and economics see Poirier, 2006). The time line in Figure 1.2 also indicates the intro-
duction of WinBUGS, a general-purpose program that greatly facilitates Bayesian
analysis for a wide range of statistical models (Lunn, Thomas, Best, & Spiegel-
halter, 2000; Lunn, Spiegelhalter, Thomas, & Best, 2009; Sheu & O’Curry, 1998).
MCMC methods have transformed Bayesian inference to a vibrant and practical
area of modern statistics.

For a concrete and simple illustration of Bayesian inference using MCMC, con-
sider again the binomial example of 9 correct responses out of 10 questions, and
the associated inference problem for θ, the rate of answering questions correctly.
Throughout this book, we use WinBUGS to do Bayesian inference, saving us the
effort of coding the MCMC algorithms ourselves.1 Although WinBUGS does not
work for every research problem application, it will work for many in cognitive sci-

1 At this point, some readers want to know how exactly MCMC algorithms work. Other readers
feel the urge to implement MCMC algorithms themselves. The details of MCMC sampling are
covered in many other sources and we do not repeat that material here. We recommend the
relevant chapters from the following books, listed in order of increasing complexity: Kruschke
(2010a), MacKay (2003), Gilks et al. (1996), Ntzoufras (2009), and Gamerman and Lopes
(2006). An introductory overview is given in Andrieu, De Freitas, Doucet, and Jordan (2003).

You can also browse the internet, and find resources such as http://www.youtube.com/watch?

v=4gNpgSPal_8 and http://www.learnbayes.org/.
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8 The basics of Bayesian analysis
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�Fig. 1.2 A Google Scholar perspective on the increasing popularity of Bayesian inference,

showing the proportion of articles matching the search “bayes OR bayesian -author:

bayes” for the years 1980 to 2010.

ence. WinBUGS is easy to learn and is supported by a large community of active
researchers.

The WinBUGS program requires you to construct a file that contains the model
specification, a file that contains initial values for the model parameters, and a
file that contains the data. The model specification file is most important. For
our binomial example, we set out to obtain samples from the posterior of θ. The
associated WinBUGS model specification code is two lines long:

model{

theta ~ dunif(0,1) # the uniform prior for updating by the data

k ~ dbin(theta,n) # the data; in our example, k = 9 and n = 10

}

In this code, the “∼” or twiddle symbol denotes “is distributed as”, dunif(a,b)
indicates the uniform distribution with parameters a and b, and dbin(theta,n)

indicates the binomial distribution with rate θ and n observations. These and many
other distributions are built in to the WinBUGS program. The “#” or hash sign
is used for comments. As WinBUGS is a declarative language, the order of the two
lines is inconsequential. Finally, note that the values for k and n are not provided
in the model specification file. These values constitute the data and they are stored
in a separate file.

When this code is executed, you obtain a sequence of MCMC samples from the
posterior p (θ | D). Each individual sample depends only on the one that immedi-
ately preceded it, and this is why the entire sequence of samples is called a chain.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01845-7 - Bayesian Cognitive Modeling: A Practical Course
Michael D. Lee and Eric-Jan Wagenmakers
Excerpt
More information

http://www.cambridge.org/9781107018457
http://www.cambridge.org
http://www.cambridge.org


9 Markov chain Monte Carlo

MCMC Iteration
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�Fig. 1.3 Three MCMC chains for rate parameter θ, after observing 9 correct responses and 1

incorrect response.

In more complex models, it may take some time before a chain converges from its
starting value to what is called its stationary distribution. To make sure that we
only use those samples that come from the stationary distribution, and hence are
unaffected by the starting values, it is good practice to diagnose convergence. This
is an active area of research, and there is an extensive set of practical recommenda-
tions regarding achieving and measuring convergence (e.g., Gelman, 1996; Gelman
& Hill, 2007).

A number of worked examples in this book deal with convergence issues in de-
tail, but we mention three important concepts now. One approach is to run multiple
chains, checking that their different initial starting values do not affect the distri-
butions they sample from. Another is to discard the first samples from each chain,
when those early samples are sensitive to the initial values. These discarded sam-
ples are called burn-in samples. Finally, it can also be helpful not to record every
sample taken in a chain, but every second, or third, or tenth, or some other subset
of samples. This is known as thinning , a procedure that is helpful when the chain
moves slowly through the parameter space and, consequently, the current sample in
the MCMC chain depends highly on the previous one. In such cases, the sampling
process is said to be autocorrelated.

For example, Figure 1.3 shows the first 100 iterations for three chains that were
set up to draw values from the posterior for θ. It is evident that the three chains
are “mixing” well, suggesting early convergence. After assuring ourselves that the
chains have converged, we can use the sampled values to plot a histogram, construct
a density estimate, and compute values of interest. To illustrate, the three chains
from Figure 1.3 were run for 3000 iterations each, for a total of 9000 samples from
the posterior of θ. Figure 1.4 plots a histogram for the posterior. To visualize how the
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10 The basics of Bayesian analysis
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�Fig. 1.4 MCMC-based Bayesian parameter estimation for rate parameter θ, after observing 9

correct responses and 1 incorrect response. The thin solid line indicates the fit of a

density estimator. Based on this density estimator, the mode of the posterior

distribution for θ is approximately 0.89, and the 95% credible interval extends from

0.59 to 0.98, closely matching the analytical results from Figure 1.1.

histogram is constructed from the MCMC chains, the bottom panel of Figure 1.4
plots the MCMC chains sideways; the histograms are created by collapsing the
values along the “MCMC iteration” axis and onto the “θ” axis.

In the top panel of Figure 1.4, the thin solid line represent a density estimate.
The mode of the density estimate for the posterior of θ is 0.89, whereas the 95%
credible interval is (0.59, 0.98), matching the analytical result shown in Figure 1.1.

The key point is that the analytical intractabilities that limited the scope of
Bayesian parameter estimation have now been overcome. Using MCMC sampling,
posterior distributions can be approximated to any desired degree of accuracy. This
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