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Brownian Motion

The initial sections of this chapter are devoted to the definition of Brown-
ian motion (the mathematical object, not the physical phenomenon) and
a compilation of its basic properties. The properties in question are quite
deep, and readers will be referred elsewhere for proofs. Later sections are
devoted to the derivation of further properties and to calculation of several
interesting distributions associated with Brownian motion.

Before proceeding, readers are advised to at least look through Appen-
dices A and B, which enunciate some standing assumptions (in particular,
joint measurability and right-continuity of stochastic processes) and ex-
plain several important conventions regarding notation and terminology.
As noted there, and in the Guide to Notation and Terminology, the value of
a stochastic process X at time t may be written either as Xt or as X(t), de-
pending on convenience. The former notation is generally preferred, but the
latter is used when necessary to avoid clumsy typography like subscripts
on subscripts.

1.1 Wiener’s theorem

A stochastic process X is said to have independent increments if the random
variables X(t0), X(t1) − X(t0), . . . , X(tn) − X(tn−1) are independent for any
n ≥ 1 and 0 ≤ t0 < · · · < tn < ∞. It is said to have stationary independent
increments if moreover the distribution of X(t) − X(s) depends only on
t − s. Finally, we write Z ∼ N( µ, σ2) to mean that the random variable
Z has the normal distribution with mean µ and variance σ2. A standard
Brownian motion, or Wiener process, is then defined as a stochastic process
X having continuous sample paths, stationary independent increments, and
X(t) ∼ N(0, t). Thus, in our terminology, a standard Brownian motion starts
at level zero almost surely. A process Y will be called a ( µ, σ) Brownian
motion if it has the form Y(t) = Y(0) + µt + σX(t), where X is a Wiener
process and Y(0) is independent of X. It follows that Y(t + s) − Y(t) ∼
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2 Brownian Motion

N( µs, σ2s). We call µ and σ2 the drift and variance of Y , respectively. The
term Brownian motion, without modifier, will be used to embrace all such
processes Y .

There remains the question of whether standard Brownian motion exists
and whether it is in any sense unique. That is the subject of Wiener’s the-
orem. For its statement, let C be the Borel σ-algebra on C := C[0,∞) as
in Section A.2, and let X be the coordinate process on C as in Section A.3.
The following is proved in the setting of C[0, 1] in Section 8 of Billingsley
(1999); the extension to C[0,∞) is essentially trivial.

Theorem 1.1 (Wiener’s Theorem) There exists a unique probability mea-
sure P on (C,C) such that the coordinate process X on (C,C, P) is a stan-
dard Brownian motion.

This P will be referred to hereafter as the Wiener measure. It is left as an
exercise to show that a continuous process is a standard Brownian motion if
and only if its distribution (see Section A.2) is the Wiener measure. When
combined with Theorem 1.1, this shows that standard Brownian motion
exists and is unique in distribution. No stronger form of uniqueness can be
hoped for, because the definitive properties of standard Brownian motion
refer only to the distribution of the process.

Before concluding this section we record one more important result. See
Chapter 12 of Breiman (1968) for a proof.

Theorem 1.2 If Y is a continuous process with stationary independent
increments, then Y is a Brownian motion.

This beautiful theorem shows that Brownian motion can actually be de-
fined by stationary independent increments and path continuity alone, with
normality following as a consequence of these assumptions. This may do
more than any other characterization to explain the significance of Brown-
ian motion for probabilistic modeling.

With an eye toward future requirements, we now introduce the idea of
a Brownian motion with respect to a given filtration. Let (Ω,F ,F, P) be a
filtered probability space in the sense of Section A.1, and let X be a con-
tinuous process on this space. We say that X is a ( µ, σ) Brownian motion
with respect to F, or simply a ( µ, σ) Brownian motion on (Ω,F ,F, P), if

X is adapted,(1.1)

Xt − Xs is independent of Fs, 0 ≤ s ≤ t, and(1.2)

X is a ( µ, σ) Brownian motion in the sense of Section 1.1.(1.3)
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1.2 Quadratic variation and local time 3

Roughly speaking, (1.1) and (1.2) say that Ft contains complete informa-
tion about the history of X up to time t, but no information at all about the
evolution of X after t. For a specific example, one may take the canoni-
cal space of Section A.3 with P the Wiener measure. In that case, X is a
standard Brownian motion on (Ω,F ,F, P).

1.2 Quadratic variation and local time

One of the best known properties of Brownian motion is that almost all
its sample paths have infinite variation over any time interval of positive
length. Thus Brownian sample paths are emphatically not VF functions
(see Section B.2). In contrast to this negative result, a sharp positive state-
ment can be made about the so-called quadratic variation of Brownian
paths. To introduce this important concept we need a few definitions. First,
a partition of the interval [0, t] is a set of points Πt = {t0, t1, . . . , tn} with
0 = t0 < · · · < tn = t, and the mesh of such a partition is

‖Πt‖ := max
1≤k≤n

(tk − tk−1).

Let f : [0,∞)→ R be fixed and define

(1.4) qt(Πt) :=
n∑

k=1

[
f (tk) − f (tk−1)

]2 .

If there exists a number qt such that qt(Πt) → qt as ‖Πt‖ → 0, then we
call qt the quadratic variation of f over [0, t]. The proof of the following
proposition is left as an exercise.

Proposition 1.3 If f is a continuous VF function, then qt = 0 for all t ≥ 0.

Let X be a ( µ, σ) Brownian motion on some filtered probability space
(Ω,F ,F, P), and define Qt(ω) as qt is defined above, but with X(ω) in place
of f , assuming for the moment that the limit exists. The following propo-
sition is proved in most standard texts.

Proposition 1.4 For almost every ω ∈ Ω we have Qt(ω) = σ2t for all
t ≥ 0.

Three increasingly surprising implications of Proposition 1.4 are as fol-
lows. First, the quadratic variation Qt exists for almost all Brownian paths
and all t ≥ 0. Second, it is not zero if t > 0, and hence X almost surely
has infinite ordinary variation over [0, t] by Proposition 1.3. Finally, the
quadratic variation of X does not depend on ω!
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4 Brownian Motion

It would be difficult to overstate the significance of Proposition 1.4. We
shall see later that it contains the essence of Itô’s formula, and that Itô’s
formula is the key tool for analysis of Brownian motion and related pro-
cesses. Although a complete proof of Proposition 1.4 would carry us too
far afield, there are some easy calculations which at least help to make this
critical result plausible. If f is replaced by X in (1.4), then the expected
value of the sum on the right side is

(1.5)

n∑
k=1

E
{
[X(tk) − X(tk−1)]2

}
=

n∑
k=1

[
µ2(tk − tk−1)2 + σ2(tk − tk−1)

]
−→ σ2t as ‖Πt‖ → 0.

Similarly, using the independent increments of X, one may calculate ex-
plicitly the variance of the sum. (This calculation is left as an exercise.)
The variance is found to vanish as ‖Πt‖ → 0, proving that the sums con-
verge to σ2t in the L2 sense as n → ∞. Proposition 1.4 says that they also
converge almost surely.

Another nice feature of Brownian paths arises in conjunction with the
occupancy measure of the process. For each ω ∈ Ω and A ∈ B (the Borel
σ-algebra on R) let

v(t, A, ω) :=
∫ t

0
1A (Xs(ω)) ds, t ≥ 0,

with the integral defined in the Lebesgue sense. Thus v(t, A, ·) is a random
variable representing the amount of time spent by X in the set A up to time t,
and v(t, ·, ω) is a positive measure on (R,B) having total mass t; this is the
occupancy measure alluded to above. The following theorem, one of the
deepest of all results relating to Brownian motion, says that the occupancy
measure is absolutely continuous with respect to Lebesgue measure and
has a smooth density. See Section 7.2 of Chung and Williams (1990) for a
proof.

Theorem 1.5 There exists l : [0,∞) × R × Ω → R such that, for almost
every ω, l(t, x, ω) is jointly continuous in t and x and

v(t, A, ω) =

∫
A

l(t, x, ω) dx for all t ≥ 0 and A ∈ B.

The most difficult and surprising part of this result is the continuity of l
in x, a smoothness property that testifies to the erratic behavior of Brownian
paths. (Consider the occupancy measure corresponding to a continuously
differentiable sample path. You will see that it does not have a continuous
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1.3 Strong Markov property 5

density at points x that are achieved as local maxima or minima of the
path.) From Theorem 1.5 it follows that, for almost all ω,

(1.6) l(t, x, ω) = lim
ε↓0

1
2ε

∫ t

0
1[x−ε,x+ε] (Xs(ω)) ds

for all t ≥ 0 and x ∈ R. Consequently l(·, x, ω) is a continuous increas-
ing function that increases only at time points t where X(t, ω) = x. The
stochastic process l(·, x, ·) is called the local time of X at level x.

Proposition 1.6 If u : R→ R is bounded and measurable, then for almost
all ω we have

(1.7)
∫ t

0
u (Xs(ω)) ds =

∫
R

u(x)l(t, x, ω) dx, t ≥ 0.

Proof If u is the indicator 1A for some A ∈ B, then (1.7) follows from
Theorem 1.5. Thus (1.7) holds for all simple functions u (finite linear com-
binations of indicators). For any positive, bounded, measurable u we can
construct simple functions {un} such that un(x) ↑ u(x) for almost every x
(Lebesgue measure). Because (1.7) is valid for each un, it is also valid for
u by the monotone convergence theorem. Moreover, the right side of (1.7)
is finite because l(t, ·, ω) has compact support. The proof is concluded by
the observation that every bounded, measurable function is the difference
of two positive, bounded measurable functions. �

1.3 Strong Markov property

Again let X be a ( µ, σ) Brownian motion on some filtered probability space
(Ω,F ,F, P). When we speak of stopping times (see Section A.1), implicit
reference is being made to the filtration F. Here and later we write T < ∞

as shorthand for the more precise statement P{T < ∞} = 1.

Theorem 1.7 Let T < ∞ be a stopping time, and define X∗t = XT+t − XT

for t ≥ 0. Then X∗ is a ( µ, σ) Brownian motion with starting state zero and
X∗ is independent of FT .

Let F ∗ be the smallest σ-algebra with respect to which all the random
variables {X∗t , t ≥ 0} are measurable. The last phrase of the theorem means
that FT and F ∗ are independent σ-algebras. Theorem 1.7 is proved in Sec-
tion 37 of Billingsley (1995). This result articulates the strong Markov
property in a form unique to Brownian motion. See Chapter 3 for an equiva-
lent statement that suggests more clearly what is meant by a strong Markov
process in general.
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6 Brownian Motion

1.4 Brownian martingales

Here again we denote by X a ( µ, σ) Brownian motion on a filtered prob-
ability space (Ω,F ,F, P). Thus Xt − Xs is independent of Fs for s ≤ t by
(1.2). If µ = 0, then we have

E(Xt − Xs|Fs) = E(Xt − Xs) = 0(1.8)

and

E
[
(Xt − Xs)2|Fs

]
= E

[
(Xt − Xs)2

]
= σ2(t − s).(1.9)

Obviously (1.8) can be restated as

(1.10) E(Xt|Fs) = Xs

and then the left side of (1.9) reduces to

(1.11)

E
[
(Xt − Xs)2|Fs

]
= E(X2

t |Fs) − 2E(XtXs|Fs) + X2
s

= E(X2
t |Fs) − 2XsE(Xt|Fs) + X2

s

= E(X2
t |Fs) − X2

s .

Substituting (1.11) into (1.9) and rearranging terms gives

(1.12) E(X2
t − σ

2t|Fs) = X2
s − σ

2s.

Now (1.10) and (1.12) can be restated as follows.

Proposition 1.8 If µ = 0, then X and {X2
t −σ

2t, t ≥ 0} are martingales on
(Ω,F ,F, P).

From (1.2) and (1.3) we know that the conditional distribution of Xt−Xs

given Fs is N( µ(t − s), σ2(t − s)). From this it follows that

(1.13) E
[
exp {β(Xt − Xs)} |Fs

]
= exp

{
µβ(t − s) + 1

2σ
2β2(t − s)

}
for any β ∈ R and s < t. Now let

(1.14) q( β) := µβ + 1
2σ

2β2, β ∈ R,

(the letter q is mnemonic for quadratic) and note that (1.13) can be rewrit-
ten as

(1.15) E
[
exp {β(Xt − Xs) − q( β)(t − s)} |Fs

]
= 1.

From (1.15) it is immediate that E[Vβ(t)|Fs] = Vβ(s), where

(1.16) Vβ(t) := exp {βXt − q( β)t} , t ≥ 0.

Thus we arrive at the following.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01839-6 - Brownian Models of Performance and Control
J. Michael Harrison
Excerpt
More information

http://www.cambridge.org/9781107018396
http://www.cambridge.org
http://www.cambridge.org


1.5 Two characterizations of Brownian motion 7

Proposition 1.9 Vβ is a martingale on (Ω,F ,F, P) for each β ∈ R.

Hereafter we call Vβ the Wald martingale with dummy variable β. It
plays a central role in the calculations of Chapter 3.

1.5 Two characterizations of Brownian motion

In the calculations leading up to Proposition 1.9 we used the following: if
a random variable ξ is distributed N( µ, σ2) then

E
(
eβξ

)
= eq( β) for all β ∈ R,

where q(·) is the quadratic function (1.14). Moreover, the converse of that
statement is also true: see Curtiss (1942). Combining that with the defini-
tions in Section 1.1, one easily obtains the following converse of Proposi-
tion 1.9.

Proposition 1.10 Let X be a continuous adapted process on a filtered
probability space (Ω,F ,F, P). If process Vβ defined by (1.16) is a martin-
gale for any β ∈ R, then X is a ( µ, σ) Brownian motion with respect to F.

The following more difficult converse is broadly useful. Its proof is be-
yond the scope of this book but can be found in many advanced texts; see,
for example, Section 6.1 of Chung and Williams (1990).

Theorem 1.11 Let X be a continuous martingale on a filtered proba-
bility space (Ω,F ,F, P), and further suppose that, for each t > 0, X has
quadratic variation t over the interval [0, t]. Then X is a standard Brownian
motion with respect to F.

1.6 The innovation theorem

Let W = {Wt, t ≥ 0} be a standard Brownian motion defined on some
probability space (Ω,F , P), and let ξ = {ξt, t ≥ 0} be a bounded process
defined on that same space, independent of W. Now imagine a decision
maker who observes the process

(1.17) Yt := Wt +

∫ t

0
ξs ds, t ≥ 0,

and wishes to estimate, in some sense, the trajectory of ξ given the observed
trajectory of Y . In this context it is usual to describe ξ as the “signal” to be
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8 Brownian Motion

estimated and W as the “noise” with which it is confounded. The deci-
sion maker seeks to “filter” the observed process Y , extracting from it an
estimate of the signal ξ.

A number of such filtering problems (that is, specially structured exam-
ples of the general problem just described) will be considered in Chap-
ter 8, where the following theorem plays a central role. In preparation, let
F = {Ft, t ≥ 0} be the filtration generated by the observed process Y (see
Section A.2 for the meaning of that phrase) and define

(1.18) µt := E(ξt|Ft), t ≥ 0,

and

(1.19) Zt := Yt −

∫ t

0
µs ds, t ≥ 0.

Recall from Section A.2 that all stochastic processes are assumed to be
jointly measurable in this book. Because conditional expectations are de-
fined only up to an equivalence, (1.18) does not in itself define a bona
fide process. That is, (1.18) does not specify a jointly measurable function
µt(ω), and without joint measurability the integral in (1.19) is not well de-
fined. To remedy this problem we can invoke a basic result in stochastic
process theory: there exists a ( jointly measurable) process µ = {µt, t ≥ 0}
such that µt = E(ξt|Ft) almost surely for all t ≥ 0. In fact, one can take
µ to be what is called an optional process, thereby ensuring that the pro-
cess Z defined by (1.19) is adapted to F; see Theorem 3.6 and Lemma 3.11
of Chung and Williams (1990), or Section VI.7 of Rogers and Williams
(1987). It is this choice of µ to which we refer hereafter.

In filtering theory Z is called the “innovations process,” and adopting the
terminology of Poor and Hadjiliadis (2008), we call the following result
“the innovation theorem.”

Theorem 1.12 (Innovation Theorem) The process Z = {Zt, t ≥ 0} defined
by (1.18) and (1.19) is a standard Brownian motion with respect to the
filtration F that is generated by Y.

Proof From (1.18) and the tower property of conditional expectations we
have that

(1.20) E
(∫ t

s
(ξu − µu) du|Fs

)
= 0 for 0 ≤ s ≤ t.

Moreover,

(1.21) E(Wt −Ws|Fs) = 0 for 0 ≤ s ≤ t,
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1.7 A joint distribution (Reflection principle) 9

because Wt −Ws is independent of both ξ and {Wu, 0 ≤ u ≤ s}. Also, Z is
adapted to F, so it is a martingale with respect to F by (1.17), (1.19), (1.20),
and (1.21). Finally, from (1.17) and (1.19) it follows that Z is continuous
and has the same quadratic variation as W; that is, its quadratic variation
is t over each interval [0, t]. Thus Z is a standard Brownian motion with
respect to F by Theorem 1.11. �

1.7 A joint distribution (Reflection principle)

Let X be a ( µ, σ) Brownian motion with starting state zero on some filtered
probability space (Ω,F ,F, P). Also, let Mt := sup{Xs, 0 ≤ s ≤ t} and then
define the joint distribution function

(1.22) Ft(x, y) := P{Xt ≤ x, Mt ≤ y}.

Because X0 = 0 by hypothesis, one need only calculate Ft(x, y) for y ≥ 0
and x ≤ y; the discussion is hereafter restricted to (x, y) pairs satisfying
those two conditions. We shall compute F for standard Brownian motion
in this section and then extend the calculation to general µ and σ in Sec-
tion 1.9. Temporarily fixing µ = 0 and σ = 1, note first that

(1.23)
Ft(x, y) = P{Xt ≤ x} − P{Xt ≤ x, Mt > y}

= Φ
(
xt−1/2

)
− P{Xt ≤ x, Mt > y}

where Φ(·) is the N(0, 1) distribution function. Now the term P{Xt ≤ x,
Mt > y} can be calculated heuristically using the so-called reflection prin-
ciple (note that the restriction µ = 0 is critical here) as follows: for every
sample path of X that hits level y before time t but finishes below level x at
time t, there is another equally probable path (shown by the dotted line in
Figure 1.1) that hits y before time t and then travels upward at least y − x
units to finish above level y + ( y − x) = 2y − x at time t. Thus

(1.24)
P{Xt ≤ x, Mt > y} = P{Xt ≥ 2y − x}

= P{Xt ≤ x − 2y} = Φ
(
(x − 2y)t−1/2

)
.

This argument is not rigorous, of course, but it can be made so using the
strong Markov property of Section 1.3, as follows. Let T be the first t at
which Xt = y, and define X∗ as in Theorem 1.7. From Theorem 1.7 it
follows that

P{Xt ≤ x, Mt > y} = P{T < t, X∗(t − T ) ≤ x − y}

= P{T < t, X∗(t − T ) ≥ y − x}.
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10 Brownian Motion

(The strong Markov property is needed to justify the second of these equal-
ities.) By definition X∗(t−T ) = X(t)− y and thus we arrive at (1.24). Com-
bining (1.23) and (1.24) gives the following proposition. For the corollary,
differentiate with respect to x.

Figure 1.1 The reflection principle.

Proposition 1.13 If µ = 0 and σ = 1, then

(1.25) P{Xt ≤ x, Mt ≤ y} = Φ
(
xt−1/2

)
− Φ

(
(x − 2y)t−1/2

)
.

Corollary 1.14 P{Xt ∈ dx, Mt ≤ y} = gt(x, y) dx, where

(1.26) gt(x, y) :=
[
φ
(
xt−1/2

)
− φ

(
(x − 2y)t−1/2

)]
t−1/2

and φ(z) := (2π)−1/2 exp(−z2/2) is the N(0, 1) density function.

1.8 Change of drift as change of measure

Continuing the development in the previous section, let T > 0 be fixed
and deterministic, and restrict X to the time domain [0,T ]. Starting with
the ( µ, σ) Brownian motion X = {Xt, 0 ≤ t ≤ T } on (Ω,F ,F, P), suppose
we want to construct a ( µ+ θ, σ) Brownian motion, also with time domain
[0,T ]. One approach is to keep the original space (Ω,F, P) and define a new
process Zt(ω) = Xt(ω) + θt, 0 ≤ t ≤ T . Then Z is a ( µ + θ, σ) Brownian
motion on (Ω,F ,F, P).

Another approach is to keep the original process X and change the prob-
ability measure. The idea is to replace P by some other probability measure

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01839-6 - Brownian Models of Performance and Control
J. Michael Harrison
Excerpt
More information

http://www.cambridge.org/9781107018396
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107018396: 


