This book examines the first human colonization of Asia and particularly the tropical environments of Southeast Asia during the Upper Pleistocene. In studying the unique character of the Asian archaeological record, it reassesses long-held views about the development of human ‘modernity’. Ryan J. Rabett proposes that an evolutionary relationship exists between the process of colonization, the challenges encountered during its pursuit — especially in relation to climatic and environmental change — and the forms of human behaviour that emerge as a result. The book argues that human modernity was not something achieved in the remote past in one part of the world but rather that it has developed out of a diverse, flexible and locally contingent process of adaptation; one that continues to this day.

Ryan J. Rabett is a Research Fellow at the McDonald Institute for Archaeological Research at the University of Cambridge. His research focuses on archaeological sites in Asia, and since 2007, he has been the director of a major project in northern Vietnam. He is the author of more than 40 articles, which primarily focus on prehistoric subsistence and technological strategies in Asia.
Human Adaptation in the Asian Palaeolithic

Hominin Dispersal and Behaviour during the Late Quaternary

Ryan J. Rabett
McDonald Institute, Cambridge University
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City
Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA
www.cambridge.org
Information on this title: www.cambridge.org/9781107018297
© Ryan J. Rabett 2012
This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2012
Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data
Rabett, Ryan J., 1970-
Human adaptation in the Asian palaeolithic : hominin dispersal and behaviour during the late quaternary / Ryan J. Rabett.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-107-01829-7 (hardback)
cn772.3.A1833 2012
950′.1–dc23 2011053166

isbn 978-1-107-01829-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party
Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will
remain, accurate or appropriate.

© in this web service Cambridge University Press www.cambridge.org
Contents

List of Figures and Tables page vii
Acknowledgements xi

Chapter 1: The Journey East
1.1 Introduction 1
1.2 The Palaeolithic of Asia 3
1.3 Human Adaptation in the Asian Palaeolithic 5

Chapter 2: The Pleistocene Planet
2.1 Introduction 8
2.2 The Quaternary Period 9
2.3 Rapid Climate Change 18
2.4 Conclusion 24

Chapter 3: Hominin Dispersal beyond Africa during the Lower and Middle Pleistocene
3.1 Introduction 25
3.2 Lower Pleistocene (2.58–0.775 Ma) Dispersals of Anatomically Archaic Hominins 25
3.3 Middle Pleistocene (775–127 KBP) Dispersals of Anatomically Archaic Homo 46
3.4 Dispersal Mechanisms: Faunal Turnovers, Carnivory and Habitat Specificity 62
3.5 Conclusion 66

Chapter 4: Regional Trajectories in Modern Human Behaviour
4.1 Introduction 68
4.2 The ‘Human Revolution’ in Europe 68
4.3 Modern Human Behaviour Beyond Europe 80
4.4 Conclusion 84

Chapter 5: The Initial Upper Pleistocene Dispersal of Homo sapiens Out of Africa
5.1 Introduction 85
5.2 MIS-5e (126–116 KBP) 85
5.3 MIS-5d to the Last Termination (116–22 KBP) 97
5.4 Conclusion 139
Contents

Chapter 6: Climate, Dispersal and Technological Change during the Last Termination and Early Holocene in Southeast Asia
- 6.1 Introduction 142
- 6.2 Regional Climate and Conditions across the Last Termination (22–11.7 KBP) 142
- 6.3 Genetic Evidence of Human Dispersal during the Last Termination 149
- 6.4 Technological Change 150
- 6.5 Conclusion 204

Chapter 7: Tropical Subsistence Strategies at the End of the Last Glacial
- 7.1 Introduction 208
- 7.2 Northern Borneo: Niah Caves 210
- 7.3 Northern Vietnam: Tràng An 232
- 7.4 Eastern Peninsular Malaysia: Gua Sagu and Gua Tenggek 251
- 7.5 Inter-Site Patterns of Subsistence through the Last Termination and Early Holocene 261
- 7.6 Conclusion 264

Chapter 8: Ex Levis Terra
- 8.1 Introduction 266
- 8.2 The Colonization of New Environments and the Recolonization of Changing Ones 267
- 8.3 The Last Termination in Southeast Asia 281
- 8.4 Discussion: Hominin Dispersal, Climate Change and Behavioural Evolution 284
- 8.5 Conclusion 288

Appendix 291
Bibliography 307
Index 361
List of Figures and Tables

Figures

2.1 Chronostratigraphic correlations for the Quaternary period.

2.2 Fox Glacier, South Island, New Zealand.

2.3 Map showing the locations of the Greenland GRIP, GISP2, NGRIP and NEEM ice coring operations and the Antarctic locations of the Vostok and EPICA Kohnen Station (EDML) and Dome C ice core drilling sites.

2.4 The drill hole at the NEEM ice core drilling camp.

2.5 The δ¹⁸O GISP2 ice core curve and tropical Atlantic sea surface temperature curve. GIS stages back to c. 57 KBP and GS stages back to c. 40 KBP, with the most recent named stadial and interstadial phases from the European sequence.

2.6 An ice floe from the Breiðamerkurjökull glacier, Jökulsárlón lagoon, southeast coast of Iceland.

2.7 Schematic of the global thermohaline circulation.

3.1 Map showing the East Asian Lower and Middle Pleistocene sites, together with the location of the Chinese Loess Plateau and key stratigraphic reference sections.

3.2 Map showing the locations of the Toba and Tambora volcanoes and the distribution of the Australasian tektite strewn field.

3.3 Excavations during the 1997 field season at the Gesher Benot Ya‘aqov site on the River Jordan, Israel.

3.4 Gunung Tempurung, Perak, West Malaysia.

3.5 Two bifaces from Bukit Burunuh, West Malaysia.

4.1 A portrayal of early anatomically and behaviourally modern *H. sapiens* during our species’ Late Pleistocene dispersal through Europe.

4.2 Map showing northwest Eurasian sites.

4.3 A portrayal of body ornamentation and pigment use (here, on the scalp) among Late Pleistocene *H. sapiens* around the time of their entry into Europe.

4.4 A miniature horse pendant (47 mm in length, 25 mm in height) sculpted from mammoth ivory (perforated between the front legs), dated to the Aurignacian, 30–36 kbp, Vogelherd, Germany.

4.5 The panel of horses from the Grotte Chauvet, Ardèche, France.

4.6 Franchthi Cave, southeastern Argolid, Greece.

4.7 Two *N. gibbosulus* shell beads from Es-Skhul, Israel.

4.8 A selection of MSA bone points from Blombos Cave, South Africa.

5.1 MIS-5 (74–126 KBP) oxygen isotope curve.

5.2 Map showing the trans-Sahara watershed, together with key African and Middle Eastern sites.

5.3 The Mount Carmel caves viewed from the northwest.
List of Figures and Tables

5.4 The small north-facing Es-Skhul cave and terrace, Mount Carmel. 91
5.5 Map of South, Central and northern Asia, showing the locations of sites discussed in the text. 95
5.6 Lang Rongrien rock-shelter under excavation 1984–5. 111
5.7 Photograph of the immediate environs of the Bukit Bunuh island site from a palaeolake, Lenggong Valley, West Malaysia. 113
5.8 Looking out through the West Mouth entrance to the Niah Caves complex. 116
5.9 Looking north across the ‘Hell’ trench system as preserved today towards the rock overhang and the Deep Skull still in situ. 117
5.10 A fragment of hominin cranium with pigment adhering to the interior surface. 118
5.11 Pigmented Geoemydidae plastron from Area A of the West Mouth, Niah Caves, dated to c. 41 cal. KBP. 119
5.12 A selection of struck flakes from the Hell and lower E/B1 trenches, Niah Caves. 120
5.13 Photographs of the earliest bone tool from the Hell trench, Niah Caves. 121
5.14 Inter-cutting pit features in the Pleistocene deposits of the West Mouth during the 1959 excavations of this part of the cave and the section sampled by the Niah Caves Project. 123
5.15 Indonesian–Australian excavations at Liang Bua, Flores and deep excavations in Sectors VII and XI. 124
5.16 Excavating LB1 in Sector VII. 125
5.17 Map of Pleistocene Southeast Asia, showing the exposed Sunda Shelf to −116 m, prevailing ocean currents and possible human migration routes through Wallacea. 133
6.1 Map of Pleistocene Southeast Asia, showing the locations of terrestrial and ocean sediment core records. 144
6.2 Photograph of the Situ Bayongbong location during coring. 145
6.3 Map of Pleistocene Southeast Asia, showing the distribution of bone tool assemblages across the Sunda Shelf, Wallacea and northwest Sahul. 153
6.4 Examples of bone points from the Phase II occupation at Lobang Hangus, classified as likely to have been projectile armatures. 154
6.5 A ‘self-barbed’ bone point from the Lobang Hangus, Phase II assemblage, compared with a bone-barbed spear from Australia. 155
6.6 An example of a longitudinally split short convex point, or ‘gouge’, with significant rounding and polishing to the utilised surface, Phase II, Lobang Hangus, and an example of a more complete specimen of this kind of implement from the Late Holocene levels at nearby Kain Hitam Cave. 156
6.7 Stingray barb points (probably Pastinachus sephen) excavated by the Niah Caves Project in Area D of the West Mouth. 157
6.8 Evidence of extensively imposed form to create a hafting surface, Ban Lum Khao. 165
6.9 Examples of scrapers from the Early Holocene horizons at Lie Siri. 169
6.10 Elongated, blade-like scrapers from horizons I and II at Bui Ceri Uato, East Timor. 170
6.11 Tanged and other retouched blades from Uai Bobo 1, horizons V to IIIc. 171
6.12 Fish hook made from Trochus niloticus, Lene Hara. 172
6.13 Ulu Leang 1 at the end of excavations, July 1969. 178
6.14 Examples of Maros points. 179
6.15 An example of a unifacial, centripally flaked pebble tool or ‘Sumatra type’, 16 × 84 mm, from Gunong Pondok, layer G, 3.36 m below datum. 187
List of Figures and Tables

6.18 An early stage in excavations at Gua Kerbau in 1926.
7.1 Photograph showing excavation work beneath the rock overhang (Area A, Niah Caves Project), probably 1965.
7.2 The archaeological compound of the West Mouth, Niah Caves.
7.3 Fragments of Cercopithecidae long bone constituting manufacturing debris from bone tool production.
7.4 Examples of cut-marked distal humeri from Cercopithecidae from the Lobang Hangus, Phase II occupation.
7.5 The NISP values and frequency of occurrence of butchery traces to the distal humerus of *Arctictis binturong* compared to other key taxonomic groups from the Phase II cut-marked assemblage from Lobang Hangus.
7.6 A view of the Upper Cave at Hang Boi looking east towards the archaeological compound and access to the Lower Cave, with the opening to the cave mouth visible.
7.7 Contexts and sample columns in the east and south-facing sections of Trench 1 at Hang Boi.
7.8 The southeast-facing section of excavations at Hang Boi (2009 field season), illustrating the whole shell and sediment-rich crushed shell stratigraphy that has been revealed in the Upper Cave shell midden.
7.9 The remains of a hunter's small fire found on the open floor of the Upper Cave at Hang Boi in 2010.
7.10 Three pierced Neritidae shells recovered from open contexts at Hang Boi.
7.11 *Villopotamon* sp. Raffles Museum of Biodiversity Research at the University of Singapore and specimens of archaeological chelae from Hang Boi.
7.12 *Panthera* cf. *pardus* specimen from Hang Boi compared against *Panthera tigris*.
7.13 Archaeological (L) maxilla fragment with PM₁, M₁ and M₃ in situ, compared alongside *Ratufa* (= *Sciurus*) bicolor.
7.14 Keeled box turtle (*Cuora mouhotii*) and a nuchal fragment identified to this species.
7.15 One of a population of *Macaca arctoides* (stump-tailed macaque) that currently inhabits Tràng An Park.
7.16 Asian leaf turtle (*Cylcemyd dentata*) and specimens of third and fourth (L) peripheral dermal plates of this species from Gua Sagu.
7.17 Cut-marks to the inside of the hyo- or hypoplastron dermal plate of a chelonid, Gua Sagu, and cut-marks to a chelonid femur or humerus mid-shaft.
8.1 View of wet rice fields just prior to the transplantation of rice seedlings, near the village of Pa’ Dalih in the Kelabit Highlands of Sarawak.

Tables

3.1 Identified Mammalian Fauna from Goudi/Majuangou III and Xiaochangliang, Northeast China
3.2 Identified Mammalian Fauna from Chenjiawo and Gongwangling, Central China
3.3 Identified Mammalian Fauna from the M₃ and M₄ Components of the ‘Yuanmou Hominid Fauna’, Yuanmou Basin, North Central China
List of Figures and Tables

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Identified Taxa from the Early and Late Phase II Occupation of Area A, in the West Mouth of the Niah Caves (Excluding Human Remains)</td>
<td>213</td>
</tr>
<tr>
<td>7.2</td>
<td>Taxa Represented during the Early Holocene Occupation of the West Mouth, Area D</td>
<td>222</td>
</tr>
<tr>
<td>7.3</td>
<td>Taxa Represented during the GIS-1 Occupation of Lobang Hangus</td>
<td>224</td>
</tr>
<tr>
<td>7.4</td>
<td>Identified Invertebrate Macrofaunal Remains from the Upper Cave Shell Midden (2007–8 Samples), Hang Boi</td>
<td>237</td>
</tr>
<tr>
<td>7.5</td>
<td>Vertebrate Fauna Identified and Quantified from the Cave Mouth Midden at Hang Boi (2008–9 samples quantified)</td>
<td>243</td>
</tr>
<tr>
<td>7.6</td>
<td>Identified Vertebrate Fauna from Pleistocene and Early Holocene Levels at Gua Sagu (spits 5–11) and Gua Tenggek (spits 4–7)</td>
<td>255</td>
</tr>
<tr>
<td>8.1</td>
<td>The Broad Adaptive Circumstances and Strategies of Tropical Hunter-Gatherer Communities during most of the Last Termination, Southeast Asia</td>
<td>283</td>
</tr>
</tbody>
</table>
Acknowledgements

Human Adaptation in the Asian Palaeolithic draws together work from several research projects with which I have been involved over the last decade; as such, numerous people are owed my sincere thanks. Among these, I must thank first of all my colleagues and friends involved in the Niah Caves and Tràng An Archaeological projects: among many others, Jo Appleby, Graeme Barker, Huw Barton, Bori Borbala-Nyiri, Jasmina Ceron, the Earl of Cranbrook, John deVos, Lucy Farr, Dave Gilbertson, Jason Hawkes, Daphne Hills, Chris Hunt, John Krigbaum, Lindsay Lloyd-Smith, Natalie Ludgate, Lisa Marlow, John Meneely, Mike Morley, Nguyễn Cao Tài, Nguyễn Văn Sơn, Nguyễn Văn Trương, Kirsty Penkman, Phil Piper, Peter Pritchard, Ian Reeds, Tim Reynolds, Richard Sabin, David Simpson, Chris Stimpson, Paul Storm, Kath Szabó, Marc Verhoeven and Hannah Zukswert. In Tràng An, I must also thank, in particular, all the park staff who have supported the project through six field seasons and have become key components of it as well as becoming valued friends. I am very grateful to the organisations and institutions that have made both this latter project and my wider research possible over the last few years: including the D. M. McDonald Grants and Awards Fund, the Templeton Foundation, the Evans Fund, the Xuan Truong Corporation, the Ninh Bình People's Committee, Pusat Penyelidikan Arkeologi Malaysia (Universiti Sains Malaysia), the Arts and Humanities Research Council, the University of Cambridge and the British Academy.

The original idea for this book came out of discussions with Preston Miracle, in the Department of Archaeology, Cambridge, following a year when I had been lecturing on the Upper Palaeolithic (2006–7). Without Preston’s encouragement and my students’ interest in the topic (Risa Carlson, Alice Clough, Rob Hedge, Jenny Lee and Madeline Steele), it may never have got off the ground. The manuscript ultimately took shape between late 2008 and mid-2009, with reviews and revision over the following months (and years). At Cambridge University Press, I must extend my thanks to Beatrice Rehl and Amanda Smith for taking on this project and seeing the book through its various stages of gestation. At Aptara, thanks also to Shana Meyer and her colleagues for the way they so quickly and efficiently shepherded it from manuscript to final proofs. Many thanks also to the anonymous reviewers, who both gave me thorough, critical, encouraging and above all helpful comments on the manuscript during both rounds of the review process.

The text is illustrated through a combination of my own images and figures and information generously provided by colleagues and friends, including Douglas Anderson, Graeme Barker, Peter Bellwood, Torsten Blanck, Katie Boyle, Emil Charles, David Cobbett, Nicholas Conard, Fiona Coward, Ipoi Datan, Frantz Delpla, Robin Dennell, Lucy Farr, Ian Glover, Naarma Goren-Inbar, Dora Kemp, Lindsay Lloyd-Smith, Matt Lowe, Tohru Naruse, Jessica Rippenganl, Berenice Robinson, Mokhtar Saidin, Brian Stewart, Marian Vanhaeren, Michael Williams, Sibylle Wolf and Zuraina Majid. Some figures in the book were kindly provided by Wall to Wall Television, the journals Antiquity and Journal of Archaeological Science, Taylor and Francis Publishing and, via open access, the NEEM ice core drilling project. The
Acknowledgements

Research appearing in the book was conducted at the McDonald Institute for Archaeological Research, University of Cambridge; the Cambridge University Museum of Archaeology and Anthropology; the University Museum of Zoology, Cambridge; the Natural History Museum, London; the Sarawak Museum; the Pitt Rivers Museum, Oxford; Universiti Sains Malaysia, Penang, and the Chelonian Institute, Florida. At the McDonald Institute, special thanks must go to Dora Kemp who, despite her schedule, somehow still found the time to produce the brilliant series of maps used in this book; also to Brian Stewart, Chris Stimpson (who also appears on the cover), Jo Appleby, Katie Boyle, Sacha Jones and Becky Farbstein for their thoughts, ideas and support, all of which are greatly appreciated.

Among the many people who have influenced this work, three stand out especially. I would not have even embarked on the study of the Palaeolithic were it not for Paul Mellars – partly because he interviewed me when I first came up to Cambridge but mostly because of the inspiration I got out of his lectures and supervisions. While much of what is written herein is, in a way, a response to ideas and models advanced by Paul, none of the questions I have asked would have come to be without the huge contribution he has made to the study of the Palaeolithic. The second person is Graeme Barker. More than any other senior colleague, Graeme's influence has shaped the way I approach academic research, and he has been an ever-pragmatic guiding force behind my work. I owe him a great deal. Finally, warm thanks must go to my close colleague and friend Phil Piper. Phil and I struck up a great and productive professional partnership through our work on the Niah Caves Project – one that we have maintained in the years since.

Human Adaptation in the Asian Palaeolithic was mostly written during spells in Canada staying with family, either through the depths of −30 degree winters or during long, hot summers. I must thank my parents and sister; my girlfriend, Nellie; and the Verzijlenberg family for their wonderful support, tolerance and laughter during those times; as well, Carac, for telling me long ago that I might just get this far. Most of all, I must thank my nephew and niece (Alec and Mya), whom I was babysitting at the same time as writing. They were incredibly good and patient in allowing me ‘my mornings’ to work. This book is dedicated to them.

Sundridge, July 2012