An Introduction to Clouds

From the Microscale to Climate

Clouds, in their various forms, are a vital part of our lives. Their effects on the Earth's energy budget and the hydrological cycle depend on processes on the microphysical scale, encompassing the formation of cloud droplets, ice crystals and precipitation. Cloud formation, in turn, depends on the large-scale environment as well as the characteristics and availability of aerosol particles. An integrated approach drawing on information from all these scales is essential to gain a complete picture of the behavior of clouds in the atmosphere.

An Introduction to Clouds provides a fundamental understanding of clouds, ranging from cloud microphysics to the large-scale impacts of clouds on climate. On the microscale, phase changes and ice nucleation are covered comprehensively, including aerosol particles and the thermodynamics relevant for the formation of clouds and precipitation. At larger scales, cloud dynamics, mid-latitude storms and tropical cyclones are discussed, leading to the role of clouds in the hydrological cycle and their effect on climate.

Each chapter ends with problem sets and multiple-choice questions that can be completed online; important equations are highlighted in boxes for ease of reference. Combining mathematical formulations with qualitative explanations of the underlying concepts, this accessible book requires relatively little previous knowledge, making it ideal for advanced undergraduate and graduate students in atmospheric science, environmental sciences and related disciplines.

Ulrike Lohmann is a professor at the Institute for Atmospheric and Climate Science, ETH Zurich. She obtained her Ph.D. in climate modeling and her research now focuses on the role of clouds and aerosol particles in the climate system, with an emphasis on clouds containing ice. Professor Lohmann has published more than 200 peer-reviewed articles and several book chapters, and was a lead author of the Fourth and Fifth IPCC Assessment Reports. She was awarded the Canada Research Chair in 2002 and was the recipient of the AMS Henry G. Houghton Award in 2007. She is a fellow of the American Geophysical Union and the German Academy of Sciences, Leopoldina. Ulrike Lohmann has been teaching classes in cloud microphysics and cloud dynamics for almost 20 years at both undergraduate and graduate levels.

Felix Lüönd is a researcher at the Swiss Federal Institute of Metrology, METAS. He obtained his Ph.D. in atmospheric ice nucleation, for which he was awarded the ETH medal. His experimental work focused on cloud microphysics. He specialized in the development of dedicated instrumentation to study the aerosol-induced freezing of cloud droplets and the interpretation of the resulting experimental data in the framework of nucleation theory and its advancements. Currently, Dr. Lüönd's research activities are concentrated on aerosol metrology, particularly in the generation of ambient-like aerosols dedicated to establish traceability in measurements of ambient particulate matter and particle number concentration.

Fabian Mahrt is a Ph.D. student at the Institute for Atmospheric and Climate Science, ETH Zurich. He obtained a Master's degree in Atmospheric and Climate Sciences from ETH. Early in his career he developed a passion for cloud microphysics. He is particularly interested in aerosol particles and their role in cloud droplets and ice crystal formation. Fabian Mahrt's work is experimental in nature, measuring and understanding aerosol–cloud interactions in both the laboratory and the field.

An Introduction to Clouds

From the Microscale to Climate

ULRIKE LOHMANN, FELIX LÜÖND AND FABIAN MAHRT ETH Zurich, Institute for Atmospheric and Climate Science, Switzerland

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107018228

© Ulrike Lohmann, Felix Lüönd and Fabian Mahrt 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

ISBN 978-1-107-01822-8 Hardback

Additional resources for this publication at www.cambridge.org/clouds

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To our families Kassiem, Stefanie, Claudia, Jana and Rainer

Contents

Preface H					
Lis	t of sy	mbols ar	nd acronyms	xvi	
1	Cloud	ls		1	
•	1.1	Defini	ition and importance of clouds	1	
	1.2	Macro	oscopic cloud properties and cloud types	3	
		1.2.1	Low-level layered clouds	5	
		1.2.2	Low-level clouds with vertical extent	8	
		1.2.3	Mid-level clouds	10	
		1.2.4	High-level clouds	10	
		1.2.5	Other cloud types	13	
	1.3	Micro	physical cloud properties	15	
		1.3.1	Cloud phase	15	
		1.3.2	Size distributions and water contents	17	
	1.4	Exerc	ises	23	
2	Theri	modynan	26		
	2.1	Basic	definitions	26	
		2.1.1	Thermodynamic states and variables of state	26	
		2.1.2	Intensive and extensive variables	27	
		2.1.3	Open, closed and isolated systems	28	
		2.1.4	Thermodynamic equilibrium	28	
		2.1.5	Reversible and irreversible processes	29	
	2.2	Dry a	ir	31	
		2.2.1	Ideal gas law	32	
		2.2.2	First law of thermodynamics	32	
		2.2.3	Special processes	35	
		2.2.4	The Carnot process	36	
		2.2.5	Air parcels	38	
		2.2.6	Specific entropy	39	
	2.3	Thern	nodynamic charts	40	
	2.4	Thern	nodynamics of phase transitions	41	
		2.4.1	The role of the Gibbs free energy in phase transitions	42	
		2.4.2	Phase transitions in thermodynamic equilibrium: the		
			Clausius–Clapeyron equation	45	
		2.4.3	Saturation vapor pressure below 273.15 K	48	

vii

viii	-	Contents					
		25	Moist	air	52		
		2.5	2.5.1	Water in the atmosphere	52		
			2.5.2	Partial pressure	52		
			2.5.3	Water vapor mixing ratio and specific humidity	53		
			2.5.4	Virtual temperature	53		
			2.5.5	Relative humidity	54		
			2.5.6	Dew point temperature	55		
			2.5.7	Wet-bulb temperature, wet-bulb potential temperature and			
				lifting condensation level	57		
			2.5.8	Isentropic condensation temperature	59		
			2.5.9	Equivalent potential temperature and equivalent temperature	60		
			2.5.10	Saturation equivalent potential temperature and saturation			
				equivalent temperature	61		
			2.5.11	Wet adiabatic processes	62		
		2.6	Exercis	ses	63		
	3	Atmo	ospheric dy	/namics	68		
		3.1	Basic e	equations and buoyancy force	68		
			3.1.1	Navier–Stokes equation	68		
			3.1.2	Coriolis and centrifugal force	69		
			3.1.3	Hydrostatic equation	70		
			3.1.4	Hypsometric equation	70		
			3.1.5	Buoyancy force	71		
		3.2	Stabilit	ty in dry air	72		
			3.2.1	Dry adiabatic lapse rate	72		
			3.2.2	Lapse rate and stability	73		
			3.2.3	Brunt–Väisälä frequency	74		
		3.3	Stabilit	ty in condensing air	76		
		3.4	Instabi	lity of layers	79		
		3.5	Horizo	ntal restoring forces	81		
			3.5.1	Geostrophic wind	81		
			3.5.2	I hermal wind	84		
		20	3.5.3	Inertial instability	83		
		3.6	Slantw	ise displacement	88		
	3.7 Exercises		Ses	90			
	4	Mixir	ng and con	vection	95		
		4.1	Mixing		95		
			4.1.1	Isobaric mixing	95		
		4.2	4.1.2	Adiabatic mixing	98		
		4.2	Convec	ction	99		
			4.2.1	Level of free convection	99		
			4.2.2	Convective condensation level	99		
			4.2.3	Elementary parcel theory	103		

ix	-	Contents				
		4.2.4 Modification of the elementary parcel theory 10:				
		4.3 Exercises 112				
	5	Atmospheric aerosol particles 11:				
		5.1 Chemical and physical characteristics of aerosol particles 11:				
		5.1.1 Chemical characteristics 11:				
		5.1.2 Physical characteristics 110				
		5.2 Aerosol size distributions 113				
		5.2.1 Discrete size distributions 11				
		5.2.2 Size distribution function 11				
		5.2.3 Logarithmic normal distributions 12				
		5.2.4 Surface and volume distributions 12.				
		5.2.5 Observed aerosol size distributions 120				
		5.3 Aerosol sources 12				
		5.3.1 Formation mechanisms of aerosol particles 12				
		5.3.2 Aerosol emissions 13				
		5.4 Aerosol sinks 13:				
		5.4.1 Dry scavenging 13:				
		5.4.2 Wet scavenging 13				
		5.4.3 Atmospheric processing of aerosol particles 14.				
		5.5 Burden and lifetime of aerosols 14				
		5.6 Summary of aerosol processes 14				
		5.7 Exercises 14				
	6	Cloud droplet formation and Köhler theory 15:				
		6.1 Nucleation 15:				
		6.1.1 Initiation of phase transitions 15				
		6.1.2 Cluster formation 15				
		6.2 Kelvin equation 16				
		6.3 Hygroscopic growth 16.				
		6.4 Raoult's law 16				
		6.5 Köhler curve 17				
		6.5.1 Stable and unstable equilibrium 17.				
		6.5.2 The role of particle size and chemistry for Köhler				
		activation 170				
		6.6 Measurements of cloud condensation nuclei 17				
		6.7 Summary of cloud droplet formation by Köhler activation 18				
		6.8Exercises182				
	7	Microphysical processes in warm clouds 180				
		7.1 Droplet growth by diffusion and condensation 18				
		7.1.1 Diffusion equation for water vapor 18				
		7.1.2 Heat conduction equation 18				
		7.1.3 Droplet growth equation 19				

х	Contents				
		7.1.4 Solution of the droplet growth equation	193		
		7.1.5 Growth of a droplet population	193		
		7.1.6 Application of the droplet growth equation	195		
	7.2	Droplet growth by collision-coalescence	198		
		7.2.1 Initiation of the collision–coalescence process	198		
		7.2.2 Collision and coalescence efficiencies	200		
		7.2.3 Terminal velocity of cloud droplets and raindrops	202		
		7.2.4 Growth model for continuous collection	204		
		7.2.5 Growth model for stochastic collection	207		
	7.3	Evaporation and break-up of raindrops	208		
		7.3.1 Evaporation of cloud droplets and raindrops	208		
		7.3.2 Maximum raindrop size	209		
		7.3.3 Energy transformation during collision–coalescence	210		
		7.3.4 Types of raindrop break-up	212		
	7.4	Exercises	213		
8	Micro	ophysical processes in cold clouds	218		
	8.1	Ice nucleation	218		
		8.1.1 Homogeneous ice nucleation	219		
		8.1.2 Heterogeneous ice nucleation	226		
		8.1.3 Ice nucleating particles	230		
		8.1.4 Dependence of ice nucleation on temperature and			
		supersaturation	232		
	8.2	Ice crystal habits	236		
	8.3	Ice crystal growth	237		
		8.3.1 Growth by diffusion	239		
		8.3.2 Snow formation by aggregation	241		
		8.3.3 Growth by accretion and terminal velocity of snowflakes	241		
	8.4	Collapse of ice particles	245		
		8.4.1 Ice multiplication	245		
		8.4.2 Melting and sublimation of ice and snow	246		
	8.5	Summary of microphysical processes in warm and cold clouds	246		
	8.6	Exercises	248		
9	Preci	pitation	251		
	9.1	Precipitation rates	251		
	9.2	Size distributions of hydrometeors	252		
		9.2.1 Raindrop size distribution	252		
		9.2.2 Snowflake size distribution	255		
	9.3	Radar	256		
		9.3.1 Scattering regimes	257		
		9.3.2 Radar reflectivity	258		
		9.3.3 Relation of radar reflectivity to precipitation rate	260		
		9.3.4 Radar images	261		

xi	Contents					
	9.4 Types of precipitation					
	9.4.1 Stratiform precipitation	-				
	9.4.2 Convective precipitation	-				
	9.5 Synoptic and mesoscale structure of precipitation					
	9.5.1 Norwegian cyclone model					
	9.5.2 Conveyor belt approach	,				
	9.5.3 Orographic precipitation					
	9.6 Precipitation in the present and future climate	,				
	9.7 Exercises					
1(0 Storms and cloud dynamics					
	10.1 Isolated thunderstorms and hail	,				
	10.1.1 Life cycle of an ordinary thunderstorm					
	10.1.2 Hail					
	10.2 Lightning and thunder	-				
	10.2.1 Global electrical circuit					
	10.2.2 Charge separation within clouds	-				
	10.2.3 Ground flashes					
	10.3 Multicell and supercell storms					
	10.3.1 Multicell storms					
	10.3.2 Vorticity	-				
	10.3.3 Supercell storms	-				
	10.3.4 Tornadoes	-				
	10.4 Mesoscale convective systems					
	10.5 1 Compared characteristics	-				
	10.5.1 General characteristics	•				
	10.5.2 Freiequisities for itopical cyclone formation	•				
	10.5.5 Circulation within a tropical cyclone	•				
	10.5.5 Tropical cyclone as a best engine	- -				
	10.5.6 Decay of tropical cyclones	•				
	10.6 Cyclones and climate change	•				
	10.7 Exercises					
1'	1 Global energy budget					
	11.1 Energy balance at the top of the atmosphere					
	11.2 Energy balance in the atmosphere					
	11.3 Energy balance at the surface					
	11.4 Cloud radiative effects	-				
	11.5 Exercises					
12	2 Impact of aerosol particles and clouds on climate					
	12.1 Aerosol radiative forcing					
	12.1.1 Radiative forcing due to aerosol-radiation interactions	-				

xii	Contents				
		12.1.2 Radiative forcing due to aerosol-cloud interactions	340		
		12.1.3 Comparison of anthropogenic forcings	343		
	12.2 Clouds and climate				
		12.2.1 Clouds at different altitude levels	345		
		12.2.2 Cloud regimes	347		
		12.2.3 Trends in cloud cover	349		
	12.3	Climate feedbacks			
		12.3.1 Planck feedback	351		
		12.3.2 Water vapor, lapse rate and ice-albedo feedback	352		
		12.3.3 Cloud feedback	353		
	12.4	Climate engineering involving aerosol particles and clouds	356		
		12.4.1 Stratospheric aerosol injections	358		
		12.4.2 Marine cloud brightening	360		
		12.4.3 Cirrus modification	361		
		12.4.4 Summary of the climate engineering discussion	363		
	12.5	Exercises	363		
	References	S	368		
	Index		382		

The plate section is to be found between pages 214 and 215.

Preface

Clouds, in their various forms, are a vital part of our lives. They are a crucial part of the global hydrological cycle, redistributing water to Earth's surface in the form of precipitation. In addition, they are a key element for the global energy budget since they interact with both shortwave (solar) and longwave (terrestrial) radiation. These so-called cloud–radiation interactions depend strongly on the type of cloud. Clearly clouds affect the global climate and thus understanding clouds is an important factor for future climate projections. The effects on Earth's energy budget and on the hydrological cycle both depend on processes on the microphysical scale, encompassing the formation of cloud droplets, ice crystals, raindrops, snowflakes, graupel and hailstones.

Establishing an understanding of clouds and precipitation requires a knowledge of the environment in which they form, i.e. the atmosphere, with all the gases and airborne particles present there. The latter are usually referred to as aerosol particles and encompass a wide range of solid and liquid particles suspended in air. Some aerosol particles can act as nuclei to form cloud droplets or ice crystals and thus initiate the formation of clouds or change their phase from liquid to solid. Thus they influence the microphysical properties of clouds. In turn aerosol particles are removed from the atmosphere when clouds precipitate. In order to gain a complete picture of the behavior of clouds in the atmosphere, the strong interplay between aerosol particles and clouds requires one to tackle the subject in an integrated approach.

This book is intended to offer a fundamental understanding of clouds in the atmosphere. It is primarily written for students at an advanced undergraduate level who are new to the field of atmospheric sciences. The content of this book evolved from the atmospheric physics lectures held at ETH Zurich. This book is intended to serve students with a multidisciplinary background as an introduction to cloud physics, assuming that most readers will have a basic understanding of physics.

The book is organized into 12 chapters, each focusing on a particular topic. Chapter 1 introduces the major cloud types found in the atmosphere and discusses them from a macroscopic point of view. Chapters 2–4 focus on the meteorological conditions and atmospheric dynamics needed for cloud formation and the thermodynamic principles needed to describe atmospheric processes, including phase transitions.

Chapter 5 treats atmospheric aerosol particles and their physical characteristics. The sources and sinks of aerosol particles are discussed at the process level as well as in terms of their global distributions and lifetimes.

Chapters 6–8 cover cloud microphysics. Chapter 6 discusses the fundamental equations that describe the formation of cloud droplets. Chapter 7 introduces the processes which

xiii

xiv

Preface

ultimately lead to the formation of rain drops. Ice formation and other microphysical processes occurring in cold clouds are presented in Chapter 8.

Chapter 9 combines the macroscopic view of Chapter 1 with the microscopic view needed to understand the physics of precipitation as well as the differences between stratiform and convective precipitation. Also, the change in precipitation since pre-industrial times and projections into the future are included.

To understand convective clouds, knowledge about cloud dynamics is needed. This is provided in Chapter 10, where convective clouds at all scales, from isolated thunderstorms with lightning and thunder to multicells, supercells and mesoscale convective systems, including tropical cyclones, are discussed.

Finally, Chapters 11 and 12 bring the reader to the global scale. Chapter 11 outlines the physical principles of the global energy budget and discusses the effects of clouds on it. On the basis of the information in Chapter 11 the impact of aerosols and clouds on the climate since pre-industrial times and in future climate projections is considered in Chapter 12.

To strengthen concepts and test the reader's understanding, qualitative exercises and mathematical problems are provided at the end of each chapter. This allows the reader to apply directly the material of the text and provides an opportunity for further learning. To this end, online solutions are provided and can be accessed at www.cambridge.org/clouds. For some of the problem sets the usage of a tephigram will be helpful. This, along with some other material can be accessed from: www.cambridge.org/clouds. Some useful online information about atmospheric science includes the following links:

- Glossary of Meteorology: http://glossary.ametsoc.org/wiki
- Encyclopedia of Atmospheric Sciences: http://app.knovel.com/web/toc.v/cid:kpEASV0002/viewerType:toc/root_slug: encyclopedia-atmospheric/url_slug:encyclopedia-atmospheric/?
- NOAA glossary: http://w1.weather.gov/glossary/
- Fifth Assessment Report of the Intergovernmental Panel on Climate Change: http://www.climatechange2013.org

Throughout the book, important equations are underlaid in gray. All quantities are given in SI units unless stated otherwise. However, as we often refer to processes occurring above or below 0 °C, we will use degrees celsius whenever convenient, keeping in mind that temperatures need to be in kelvins in the equations given (if not noted otherwise).

The outline of the book follows a similar structure to the classic book *A Short Course in Cloud Physics* by Rogers and Yau (1989), which served the present authors not only for their own studies but also for over a decade of teaching at undergraduate level in the atmospheric physics course. Inspired by the straightforwardness of Rogers and Yau (1989) in explaining complex concepts of cloud physics and their style of imparting knowledge to readers new to the atmospheric sciences, paired with the enormous developments in this field over recent years, the authors decided to come up with this new introductory textbook, which places a stronger focus on ice clouds, cloud dynamics and climate change.

We felt that, although there are many excellent textbooks at the graduate level, a textbook introducing the physics of clouds, aerosols and precipitation in an integrated manner combining quantitative discussions at the undergraduate level was lacking. We believe that this

XV

Preface

book fills this niche in giving intuitive interpretations of the physical processes discussed. Through this approach we hope to present the fascination of clouds that has captured us and thus to stimulate the interest of the readers in this diverse field. The book provides a fundamental understanding, which can be deepened by the excellent further literature that is available.

Writing this book would not have been possible without the knowledge we received from many pioneers of the field of atmospheric sciences; these are named in the appropriate context throughout the book. Equally important, the development of this book relied on the help and support from many colleagues and we are very grateful for help in different aspects. We owe a great debt to Anina Gilgen for her invaluable contribution in putting together the exercises. Chief among those who provided excellent support are the members of our research group, who discussed drafts of different chapters and were a great source of ideas.

The authors wish to thank explicitly Manuel Abegglen, Alexander Beck, Yvonne Boose, Robert David, Remo Dietlicher, Sylvaine Ferrachat, Blaz Gasparini, Anina Gilgen, Franziska Glassmeier, Olga Henneberg, Jan Henneberger, Katty Huang, Luisa Ickes, Zamin Kanji, Christina Klasa, Monika Kohn, Larissa Lacher, Claudia Marcolli, Amewu Mensah, Angela Meyer, Baban Nagare, David Neubauer, Mikhail Paramonov, Fabiola Ramelli, Carolin Rösch, Christina Schnadt, Sarah Schöpfer, Berko Sierau, Janina Stäudle, Kathrin Wehrli and Heini Wernli for very valuable discussions and suggestions that greatly improved the textbook.

Besides, we are indebted to Björn Baschek, Lea Beusch, Sebastian Bretl, Joel Corbin, Betty Croft, Daniel Cziczo, Corinna Hoose, Hanna Joos, Miriam Kübbeler, Glen Lesins, Rebekka Posselt, Jacopo Riboldi, Vivek Sant, Linda Schlemmer, Peter Spichtinger, Eric Sulmoni, André Welti and Marc Wüest. Finally, we are grateful for all the valuable feedback we obtained from students of the atmospheric physics lectures, which has been essential for continuous improvements of the book.

The authors want to thank Remo Dietlicher, Simon Förster, Anina Gilgen, Franziska Glassmeier, Pascal Graf, Miriam Kübbeler, Jeremy Michael, David Neubauer, Sarah Schöpfer and André Welti for their help with figures.

Photographs illustrating various aspects within our textbook were kindly provided by Kouji Adachi, Laurent Barbe, Robert David, Martin Ebert, Blaz Gasparini, Christian Grams, Zachary Hargrove, Jan Henneberger, Otte Homan, Luisa Ickes, Brian Johnson, Laurie Krall, Larissa Lacher, Sandra LaCorte, Kenneth Libbrecht, Julian Quinting, Milos Vujovic and Thomas Winesett.

We specially thank the very helpful staff at Cambridge University Press, namely Susan Francis, Cassi Roberts and Zoë Pruce in guiding the development of this book and also our copy-editor Susan Parkinson for valuable comments and suggestions.

Symbols and acronyms

Symbols			
Symbol	Value/unit	Description	
A, B		Different substances in Raoult's law	
A_i, B_i		Empirical constants for the saturation vapor pressure over ice	
A_w, B_w		Empirical constants for the saturation vapor pressure over	
		water	
Α	m^2	Area	
а	m	Coefficient of the curvature term in the Köhler equation	
a_w		Water activity	
В		Buoyancy term	
B_{λ}	$\mathrm{W}\mathrm{m}^{-2}$	Black body source function	
b	m ³	Coefficient of the solution term in the Köhler equation	
b		Coefficient in the Hatch–Choate equation	
С	cm ³	CCN concentration at 1% supersaturation	
С	F/m	Capacitance for ice crystals	
C_{c}		Cunningham correction factor	
C_D		Drag coefficient	
CKE	J	Collision kinetic energy	
C_R		Constant for radar reflectivity	
c_l	4219.9 J kg ^{-1} K ^{-1}	Specific heat capacity of liquid water	
ci	$J kg^{-1} K^{-1}$	Specific heat capacity of ice	
c_p	$1005 \mathrm{J kg^{-1} K^{-1}}$	Specific heat capacity of dry air at constant pressure	
c_{pv}	$1884.4 \text{ J kg}^{-1} \text{ K}^{-1}$	Specific heat capacity of water vapor at constant pressure	
c_{v}	$718 \mathrm{Jkg^{-1}\ K^{-1}}$	Specific heat capacity of dry air at constant volume	
c_{VV}	$1418.4 \text{ J kg}^{-1} \text{ K}^{-1}$	Specific heat capacity of water vapor at constant volume	
D_a, D_v	$m^2 s^{-1}$	Diffusivities of aerosol particles or water vapor in air	
E, \tilde{E}, \hat{E}		Collision, collection, coalescence or coagulation efficiencies	
E_{coal}	J	Total energy of coalescence	
e	Ра	Partial pressure of water vapor	
e_{mix}, e'_{mix}	Ра	Mean water vapor pressure of isobarically mixed air before	
		and after condensation	
$e_{s,i}, e_{s,w}$	Ра	Saturation vapor pressures with respect to ice or water	
e_{s0}	611.2 Pa	Saturation vapor pressure at $T_0 = 273.15$ K	
<i>e</i> *		Equilibrium vapor pressure over a solution	
F	J	Helmholtz free energy	
F	Ν	Force vector	

xvi

xvii	Symbols and acronyms			
	En	$m s^{-2}$	Buoyancy force per unit mass	
	\vec{F}_{C}	$m s^{-2}$	Coriolis force per unit mass	
	F ₄	sm^{-2}	Vapor diffusion term in droplet radius growth	
	- u	5	equation	
	F^{i}_{l}, F^{l}_{l}	$m s kg^{-1}$	Vapor diffusion terms in the mass growth equations	
	d' d	6	for ice crystals and cloud droplets	
	F_D	$kg m s^{-2}$	Drag force	
	\vec{F}_F	m s ⁻²	Dissipation term for momentum, per unit mass, i.e.	
			friction	
	F_g	$kg m s^{-2}$	Gravity force	
	F_k	s m ⁻²	Thermodynamic term in droplet radius growth equation	
	F_{i}^{l} , F_{i}^{l}	m s kg ⁻¹	Thermodynamic terms in the mass growth equations	
	- k' - k	in o ng	for ice crystals and cloud droplets	
	F_{IW}, F_{IW}^{CS}	$\mathrm{W}\mathrm{m}^{-2}$	Net longwave radiative fluxes at the TOA in all-sky	
	±, Lw		and clear-sky conditions	
	F_{LW}^+, F_{LW}^+	$W m^{-2}$	Upward- and downward-directed longwave radiative	
	_		fluxes	
	F_{Sun}	$3.85 \times 10^{20} \text{ W}$	Radiation emitted by the Sun	
	F_{SW}, F_{SW}^{cs}	W m ⁻²	Net shortwave radiative fluxes at the TOA in all-sky and clear-sky conditions	
	F_{SW}^{\downarrow}	$\mathrm{W}\mathrm{m}^{-2}$	Downward-directed shortwave radiative fluxes	
	\vec{F}_{PG}	$m s^{-2}$	Pressure gradient force per unit mass	
	f	s^{-1}	Coriolis parameter, i.e. planetary vorticity	
	f		Compatibility parameter for heterogeneous	
			nucleation	
	f_{act}, f_f		Activation and frozen fractions	
	$f_{\mathcal{V}}$		Mean ventilation coefficient	
	G	J	Gibbs free energy	
	$G_{s,hom}, G_{v,hom}, G_{v,het}$	J	Surface and volume terms of the Gibbs free energy	
	G ()	T	for a pure liquid droplet and for a solution droplet	
	$G_{ex}(n)$	J	Excess Gibbs free energy due to cluster formation	
	G(n)	J = -2	Total Gibbs free energy of the cluster	
	g a a ai	5.61 m s^{-1}	Specific Gibbs free energy in general and in the	
	g, g_{v}, g_{l}	JKg	specific Globs free energy in general and in the	
	Н	T	Forthalov	
	H	$W m^{-2}$	Heat flux into the ocean	
	H	$m^2 s^{-2}$	Helicity	
	h	m	Height above Earth's surface, vertical distance	
	I_{λ}	$\mathrm{W}\mathrm{m}^{-2}$	Wavelength-dependent intensity of radiation	
	<i>I</i> , <i>I</i> ₀	${ m W}{ m m}^{-2}$	Intensity of radiation in general and at TOA	
	i		Van 't Hoff factor	
	J, J_i, J_w	${\rm cm}^{-3} {\rm s}^{-1}$	General nucleation rate and nucleation rates for ice	
			in vapor and water in vapor	
	Κ	$cm^{-3} s^{-1}$	Kinetic prefactor for the nucleation rate	
	Κ	$J m^{-1} s^{-1} K^{-1}$	Coefficient of thermal conductivity in air	
	K	$m^{3} s^{-1}$	Collision or collection kernel	

xviii	Symbols and acronyms			
	<i>K</i> ²		Modulus squared of the complex index of refraction	
	k	$1.38 \times 10^{-23} \text{ J K}^{-1}$	Boltzmann constant	
	k		Slope of the CCN–S relationship	
	$k_{\lambda,abs} = k_{abs}$	m^{-1}	Wavelength-dependent absorption	
			coefficient for greenhous gases, aerosol	
			particles and cloud hydrometeors	
	$k_{\lambda,ext} = k_{ext}$	m^{-1}	Wavelength-dependent extinction coefficient	
			for greenhous gases, aerosol particles and cloud hydrometeors	
	$k_{\lambda scat} = k_{scat}$	m^{-1}	Wavelength-dependent scattering coefficient	
	N,Setti Setti		for greenhous gases, aerosol particles and	
			cloud hydrometeors	
	L	m	Characteristic length scale for geostrophic	
			flow	
	$L_{2,1}$	$J kg^{-1}$	Latent heat for the phase change from phase	
	2,1	U	1 to phase 2	
	L_{f}	$J kg^{-1}$	Latent heat of fusion	
	$L_{f0}^{J} = L_{f}(T_{0})$	$0.333 \times 10^{6} \mathrm{J kg^{-1}}$	Latent heat of fusion at $T_0 = 273.15$ K	
	L_{S}	C	Latent heat of sublimation	
	$L_{s0} = L_s(T_0)$	$2.834 \times 10^{6} \mathrm{J kg^{-1}}$	Latent heat of sublimation at $T_0 = 273.15$ K	
	L_{v}	J kg ⁻¹	Latent heat of vaporization	
	$L_{v0} = L_v(T_0)$	$2.501 \times 10^{6} \mathrm{J kg^{-1}}$	Latent heat of vaporization at $T_0 = 273.15$ K	
	Μ	m s ⁻¹	Absolute momentum	
	MF	kg s ^{−1}	Mass flux	
	M_d	28.96 g mol^{-1}	Molecular weight of dry air	
	M_l	$kg m^{-3}$	Cloud liquid water content in units of mass	
			per unit volume	
	M_m	g mol ⁻¹	Molecular weight of moist air	
	M_{s}	g mol ⁻¹	Molecular weight of a solute	
	M_W	18 g mol^{-1}	Molecular weight of water	
	MF_d, MF_u	kg s ⁻¹	Downward and upward mass fluxes	
	m, m_W, m_S	kg	Masses of air parcel, bulk water and solute	
	m_d, m_m, m_v	kg	Masses of dry air, moist air and water vapor	
	m_0	kg	Masses of one water molecule	
	$m_i, m_l, m_R, m(r)$	kg	Masses of an ice crystal, cloud droplet and	
			collector drop and of hydrometeors in	
			general	
	m_a, m_{tot}	kg	Total mass of aerosol particles and of the	
		1	solution droplet	
	Ν	s ⁻¹	Brunt–Väisälä frequency	
	N	· · · · · · · · · · · · · · · · · · ·	Number of molecules	
	NA	$6.022 \times 10^{23} \text{ mol}^{-1}$	Avogadro's constant	
	N ₀	cm ⁻⁴	Intercept parameter for hydrometeor size distributions	
	$N, N_a, N_{CCN}, N_c,$	cm^{-3}	Number concentrations in general and of	
	N_d, N_i, N_r		aerosol particles, CCN, cloud droplets,	
			drizzle drops, ice crystals and raindrops	
	Nj		Number of particles of type <i>j</i>	

xix

	-	,
n		Number of moles or molecules
n_i, n_v	m^{-3}	Number concentrations of gas molecules and of water
., ,		vapor molecules
$n_m^e(r)$	$\rm g~cm^{-3}$	Mass concentration of hydrometeors
$n_N(r)$	$cm^{-3} \mu m^{-1}$	Number concentration of aerosol particles per
11(()	•	micrometer size
$n_N(r)$	$m^{-3} mm^{-1} or m^{-3} m^{-1}$	Number concentration of hydrometeors per unit length
$n_{N}^{e}(r)$	cm^{-3}	Number concentration of aerosol particles on a
IV V		logarithmic scale
n_s, n_w		Numbers of solute and water molecules
$n_{\rm S}(r)$	$\mu m^2 cm^{-3} \mu m^{-1}$	Surface concentration of aerosol particles per
5.7		micrometer size
$n_{c}^{e}(r)$	μ m ² cm ⁻³	Surface concentration of aerosol particles on a
3.7	•	logarithmic scale
$n_V(r)$	$\mu m^3 cm^{-3} \mu m^{-1}$	Volume concentration of aerosol particles per
• • • •		micrometer size
$n_{V}^{e}(r)$	μ m ³ cm ⁻³	Volume concentration of aerosol particles on a
V	•	logarithmic scale
Р		Probability
\overline{P}_R	W	Power received at a radar antenna
p	Ра	Atmospheric pressure
p_0	1000 hPa	Reference pressure
p_c	Ра	Pressure of the lifting condensation level
p_i, p_A, p_B	Ра	Partial pressure of particle type <i>i</i> and of substances A
		and <i>B</i>
p_n	Pa	Pressure within a cluster
p_s	Pa	Saturation vapor pressure
<i>p</i> tot	Pa	Total vapor pressure of a solution
Q	J	Heat energy
Q		Generic quantity in thermodynamics
Q_1	m^{-1}	Thermodynamic variable in supersaturation equation
Q_2		Thermodynamic variable in supersaturation equation
$Q_{\lambda,ext}$		Extinction efficiency
q	$J kg^{-1}$	Specific heat energy
q_i	kg kg ⁻¹	Cloud ice mass mixing ratio
q_l	$kg kg^{-1}$	Cloud liquid water mass mixing ratio
$q_s, q_{s,i}$	kg kg ⁻¹	Saturation specific humidity with respect to water and
		ice
q_{v}	kg kg ⁻¹	Specific humidity: mass of water vapor per unit mass
		of moist air
$q_{v,cl}$	kg kg ⁻¹	Specific humidity in a cloudy air parcel
$q_{v,env}$	kg kg ⁻¹	Specific humidity in the environment
$q_{v,mix}$	kg kg ⁻¹	Mean specific humidity in well-mixed air
q_X	kg kg ⁻¹	Condensate mixing ratio: mass of condensate per unit
		mass of dry air
R	m	Radius of a collector drop
R	$mm h^{-1}$	Precipitation or rain rate
R_d	$287 \text{ J kg}^{-1} \text{ K}^{-1}$	Gas constant of dry air
R_i	m	Melted radius of a snowflake

XX			Symbols and acronyms
	R_m	$J kg^{-1} K^{-1}$	Gas constant of moist air
	R _{Sun}	$6.98 \times 10^8 \text{ m}$	Radius of the Sun
	R_v	$461.5 \text{ J kg}^{-1} \text{ K}^{-1}$	Gas constant of water vapor
	R^*	$8.314 \text{ J mol}^{-1} \text{ K}^{-1}$	Universal gas constant
	R_{50}	m	Radius at which 50% of aerosol particles are activated
	Re		Reynolds number
	RH, RH _i	%	Relative humidities with respect to water and ice
	Ro		Rossby number
	r	m	Radius, distance in spherical coordinates
	r _{act}	m	Critical radius for activation
	r _c	m	Critical radius
	r_d, r_h, r_i, r_r	m	Radii of a droplet, hydrometeor, ice particle and raindrop
	\overline{r}_d	m	Mean volume radius
	r _{eq}	m	Equivalent radius for a raindrop or for the drop that is
	· ·		formed when a snowflake melts
	<i>r</i> _{dry}	m	Dry radius of an aerosol particle
	r _{Earth}	$6.371 \times 10^9 \text{ m}$	Radius of the Earth
	<i>r_{max}</i>	m	Maximum raindrop radius
	r _{Sun-Earth}	$1.5 \times 10^{11} \text{ m}$	Sun–Earth distance
	S	$J K^{-1}$	Entropy
	S	m ²	Surface area
	$S = S_w, S_i$		Ambient saturation ratios with respect to water and ice
	S_a	μ m ² cm ⁻³	Total aerosol surface area concentration
	Sact		Activation saturation ratio
	S_c	J	Surface energy
	Scry		Crystallization saturation ratio
	S_{del}		Deliquesence saturation ratio
	S _{max}		Maximum supersaturation reached in a cloud
	S(r)		Size-dependent saturation ratio of a solution droplet with
		2	radius r
	S_0	1360 W m^{-2}	Solar constant
	Sc	. 1 1	Schmidt number
	S	$J kg^{-1} K^{-1}$	Specific entropy
	S	m	Path length
	s, s_{cl}, s_{env}	J kg ⁻¹	Moist static energies in general and for cloudy or
		~	environmental air
	S	%	Supersaturation
	Sact	%	Supersaturation required for activation
	T	K _1	Temperature of an air parcel
	T	m s ¹	Characteristic time scale for geostrophic flow
	I_0	2/3.15 K	Melting point temperature (0 °C)
	I _{atm}	K	Average temperature of the atmosphere
	I _{cl}	K	Temperature of a cloudy air parcel
	T _{env}	K V	International and an action to the environment
		K V	Dev point temperature
	T_d	K V	Effective temperature
		K V	Encouve temperature
	$1_e, 1_{es}$	N	Equivalent and saturation equivalent temperature

xxi			Symbols and acronyms
	Tin, Tout	К	Input and output temperature of the Carnot cycle
	T_{mix}, T'_{mix}	K	Mean temperature in isobarically mixed air before and
			after condensation
	T_p	K	Temperature of the air parcel
	T_{p_0}, T_{tropo}	K	Temperatures at 1000 hPa and at the tropopause
	T_{r_d}	K	Temperature at a droplet's surface
	T_s	K	Annual global mean temperature at the Earth's surface
	T _{Sun}	5769.56 K	Temperature of the Sun
	$T_{v}, T_{v,env}$	K	Virtual temperature in general and of the environment
	T_{W}	K	Wet-bulb temperature
	t	S	lime
	U	$J_{m e^{-1}}$	Characteristic valocity scale for geostrophic flow
	U	III s	Specific internal energy
		$m s^{-1}$	Horizontal velocity components in r- and v- directions
	u, v Ua, Va	$m s^{-1}$	Geostrophic wind components in x- and y- directions
	V, V_n	m ³	Volume in general and of the cluster
	V_a	μ m ³ cm ⁻³	Total aerosol volume concentration
	Vsweep	m ³	Sweep-out volume
	\vec{v}	${ m m~s^{-1}}$	Three-dimensional velocity vector
	$\vec{v_h}$	${ m m~s^{-1}}$	Horizontal velocity vector
	v, v_i, v_w	$m^3 kg^{-1}$	Specific volume in general and of ice and water
	v ₀	m ³	Volume of an individual molecule
	vD	$m s^{-1}$	Doppler velocity
	v_h	$m s^{-1}$	Fall velocity of hydrometeors
	v_r	$m s^{-1}$	Relative velocity of two failing hydrometeors
	VT, VT, snow	III S -	Work
	W	$I k \sigma^{-1}$	Specific external work
	W. Wal	$m s^{-1}$	Vertical velocity in general and for a cloudy air parcel
	Wi		mass fraction
	wi	$kg kg^{-1}$	Adiabatic cloud liquid water mixing ratio
	Ws	$kg kg^{-1}$	Saturation water vapor mixing ratio
	WV	$ m kgkg^{-1}$	Water vapor mixing ratio: mass of water vapor per unit
			mass of dry air
	x		Dimensionless size parameter for scattering
	<i>x</i> ₀	m	Impact parameter within which a collision is certain to
	7	6 -3	occur De la clicica fonda
	2 7	$mm^{\circ}m^{\circ}$	Fauitalant reder reflectivity factor
	Σ_e	m	Equivalent radar renectivity factor
	\mathcal{A}	$m^3 k \sigma^{-1}$	Specific volumes of air ice liquid water and water vapor
	$\alpha, \alpha_l, \alpha_l, \alpha_v$ α_m	in kg	Accommodation coefficient for ice crystal growth
	α_c		Cloud albedo
	α_p		Planetary albedo
	β	$m^{-1} s^{-1}$	Meridional gradient of Coriolis parameter f
	γ, Γ	${ m K}~{ m m}^{-1}$	Lapse rates of the ambient air and of an air parcel
	γ		Radii ratio of collector drop to smaller droplet

xxii	Symbols and acronyms		
	1		
	Γ_d	9.8 K km^{-1}	Dry adiabatic lapse rate
	Γ_s	$\mathrm{K}~\mathrm{km}^{-1}$	Pseudoadiabatic lapse rate
	$\Delta F = RF$	${ m W}~{ m m}^{-2}$	Radiative forcing
	$\Delta F_{LW}, \Delta F_{SW}$	${ m W}~{ m m}^{-2}$	Changes in F_{LW} and F_{SW} at the TOA
	ΔH	${ m W}~{ m m}^{-2}$	Heat uptake by the ocean
	ΔG	J	Change in Gibbs free energy
	$\Delta G^*, \Delta G^*_{het}$	J	Gibbs free energy barrier in general and for heterogeneous nucleation
	$\Delta G_s, \Delta G_v$	J	Surface and volume terms of the change in Gibbs free energy
	$\Delta G_{s,hom}, \Delta G_{s,sol}$	J	Surface terms of the change in Gibbs free
	$\Delta G_{v,hom}, \Delta G_{v,sol}$	J	Volume terms of the change in Gibbs free
	$\Delta G_{w,v}, \Delta G_{i,w}, \Delta G_{i,v}$	J	changes in Gibbs free energy between water and vapor, ice and water, and ice and
	٨D	Wm^{-2}	Vapor
		VV III V	Change in global mean surface temperature
	ΔI_{S} δ	K	infinitesimal change
	$\epsilon,\epsilon_\lambda$		Emissivity in general and wavelength-dependent emissivity
	ϵ		Entrainment
	ϵ	0.622	Ratio $R_d/R_v = m_w/m_d$
	ζ	s^{-1}	z-component of the relative vorticity
	η	s^{-1}	<i>x</i> -component of the relative vorticity
	η		Thermodynamic efficiency of the Carnot
	θ		Contact angle
	$\hat{\theta}$	К	Potential temperature
	θ_{a}, θ_{as}	K	Equivalent and saturation equivalent
			potential temperatures
	θ_{mix}	Κ	Mean potential temperature in well-mixed air
	θ_w	К	Wet-bulb potential temperature
	κ	0.286	Ratio R_d/c_p
	κ		Hygroscopicity parameter
	Λ	m^{-1}	Entrainment rate
	Λ	$\rm cm^{-1}$	Slope of hydrometeor size distributions
	Λ_B	s^{-1}	Scavenging coefficient
	λ	m	Wavelength
	λ	$W m^{-2} K^{-1}$	Climate sensitivity parameter
	λ ₀	$W m^{-2} K^{-1}$	Null climate sensitivity parameter
	μ		Shape parameter of hydrometeor size
			distributions
	μ	$kg m^{-1} s^{-1}$	Dynamic viscocity of air
	μ	$J s^{-1}$	Chemical potential

xxiii	Symbols and acronyms		
	μ, μ_S, μ_V, μ_m	m	Number mean radius and arithmetric means
	$\mu_g, \mu_{g,S}, \mu_{g,V}, \mu_{g,m}$	m	Geometric means of the number, surface, volume and mass distributions of aerosol
	$\widetilde{\mu}, \overline{\mu}$	m	Number mode radius and radius of average
	ν	$m^2 s^{-1}$	Kinematic viscocity
	ξ	s ⁻¹	y-component of the relative vorticity
	ρ_a	$kg m^{-3}$	Density of an aerosol particle
	ρ_d	$kg m^{-3}$	Density of dry air
	ρ _{env}	$kg m^{-3}$	Density of ambient air
	ρ_l, ρ_i, ρ_s	$kg m^{-3}$	Densities of liquid water, ice and a solution
		2	droplet
	ρ, ρ_m	kg m ⁻³	Density in general and of moist air
	$\rho_{v}, \rho_{v,r_d}, \rho_{vs}$	$kg m^{-3}$	Ambient water vapor density, water vapor
			density at a droplet's surface and saturation
			water vapor density
	σ		Arithmetic standard deviation
	σ	$5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$	Stefan–Boltzmann constant
	σ	$N m^{-1}$	Surface tension
	$\sigma_{i,a}, \sigma_{i,v}$	$N m^{-1}$	Surface tension of ice in air or vapor
	$\sigma_{w,a} = \sigma_w$	$N m^{-1}$	Surface tension of water in air
	$\sigma_{w,v}$	0.0756 N m^{-1}	Surface tension of water in water vapor at 273.15 K
	$\sigma_{i,w}$	$ m N~m^{-1}$	Surface tension between ice and water
	$\sigma_{INP,i}, \sigma_{INP,v}, \sigma_{INP,w}$	$N m^{-1}$	Surface tensions between an INP and ice, vapor or water
	σ, σ_i	m	Standard deviations of the aerosol size
			distribution in mode <i>i</i>
	σ_g		Geometric standard deviation of the aerosol
	_		Ontion donth
	1		A smooth antical denth
		9 dagmaas	Latitude
	φ	, degrees	Cibbs free energy of the interface between
	$\varphi(v_n)$	J	a cluster and the parent phase
	0	$7.29 \times 10^{-5} \text{ s}^{-1}$	Farth's rotation
	(1)	$P_{a} s^{-1}$	Vertical velocity in the n-system
	i i i i i i i i i i i i i i i i i i i	s-1	Three dimensional vorticity vector
	i i i i i i i i i i i i i i i i i i i	s s ⁻¹	Horizontal vorticity vector
	Wh	0	

xxiv	Symbols and acronyms				
		Acronyms			
	AEJ AEROCOM	African easterly jet Aerosol Intercomparison project			
	AERONET	Aerosol Robotic Network			
	AOGCM	Coupled atmosphere-ocean general circulation model			
	AR4	Fourth Assessment Report of the Intergovernmental Panel on Climate Change			
	AR5	Fifth Assessment Report of the Intergovernmental Panel on Climate Change			
	aci	Aerosol-cloud interactions			
	ari	Aerosol-radiation interactions			
	a.u.	arbitrary units			
	BC	Black carbon			
	BWER	Bounded weak echo region			
	CALIPSO	Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation			
	CAPE	Convectively available potential energy $(J kg^{-1})$			
	CCB	Cold conveyor belt			
	CCL	Convective condensation level			
	CCN	Cloud condensation nuclei			
	CERES	Cioud condensation nuclei counter			
	CIN	Convective inhibition			
	CKE	Collision kinetic energy			
	CNT	Classical nucleation theory			
	CRE	Cloud radiative effect			
	CRH	Crystallization relative humidity			
	CTP	Cloud top pressure			
	DCAPE	Downdraft convectively available potential energy $(J \text{ kg}^{-1})$			
	DJF	December, January, February			
	DMS	Dimethyl sulfide			
	DRH	Deliquescence relative humidity			
	DU	Mineral dust particles			
	EC	Elemental carbon			
	ECA	Emission controlled area			
	ECHAM6 GCM	Global climate model from the Max Planck Institute for Meteorology in			
		Hamburg, Germany			
	ECMWF	European Centre for Medium-Range Weather Forecast			
	ERA-interim	ECMWF Re-analysis interim			
	ERFaci	Effective radiative forcing due to aerosol–cloud interactions			
	ERFari	Effective radiative forcing due to aerosol cloud and concell radiation			
	EKFacitan	interactions			
	GCCN	Giant CCN			
	GCM	Global climate model			
	GHG	Geoengineering Model Intercomparison Project Greenhouse gases			

XXV	Symbols and acronyms	
	GPCC	Global Precipitation Climatology Centre
	HTI	Height-time indicator
	INP	Ice nucleating particle
	IPCC	Intergovernmental Panel on Climate Change
	ISA	International standard atmosphere
	ISCCP	International Satellite Cloud Climatology Project
	ITCZ	Intertropical Convergence Zone
	IWC	Ice water content
	JJA	June, July, August
	LAADS	Level-1 and Atmosphere Archive and Distribution System
	LCRE	Longwave cloud radiative effect
	LCL	Lifting condensation level
	LFC	Level of free convection
	LH	Latent heat flux
	LNB	Level of neutral buoyancy
	LW	Longwave
	LWC	Liquid water content
	MCC	Mesoscale convective complex
	MCS	Mesoscale convective system
	MEE	Mass extinction efficiency
	MISR	Multi-angle imaging spectroradiometer
	MODIS	Moderate resolution imaging spectroradiometer
	NCFR	Narrow cold frontal rainband
	NOAA	National Oceanic and Atmospheric Administration
	OC	Organic carbon
	OLR	Outgoing longwave radiation
	PBL	Planetary boundary layer
	POA	Primary organic aerosol
	POM	Particulate organic matter
	PPI	Plan position indicator
	QLL	Quasi-liquid layer
	Radar	Radio detection and ranging
	RCP	Representative concentration pathway
	RF	Radiative forcing
	RFaci	Radiative forcing due to aerosol-cloud interactions
	RFacitari	Radiative forcing due to aerosol-cloud and aerosol-radiation interactions
	RFari	Radiative forcing due to aerosol-radiation interactions
	RH	Relative humidity
	SCE	Stochastic coalescence equation
	SCRE	Shortwave cloud radiative effect
	SH	Sensible heat flux
	SOA	Secondary organic aerosols
	SPCZ	South Pacific Convergence Zone
	SRM	Solar radiation management
	SST	Sea surface temperature
	SS	Sea salt

ххvі	Symbols and acronyms		
	SU	Sulfate	
	TC	Tropical cyclone	
	TDE	Thermodynamic equilibrium	
	TOA	Top of the atmosphere	
	WCB	Warm conveyor belt	
	WCFR	Wide cold frontal rainband	
	WFR	Warm frontal rainband	
	WMGHG	Well-mixed greenhouse gases	
	WMO	World Meteorological Organization	