
Cambridge University Press
978-1-107-01778-8 — Nominal Sets
Andrew M. Pitts 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

0

Introduction

This is a book about names and symmetry in the part of computer science

that has to do with programming languages. Although symmetry plays an im-

portant role in many branches of mathematics and physics, its relevance to

computer science may not be so clear to the reader. This introduction explains

the computer science motivation for a theory of names based upon symmetry

and provides a guide to what follows.

0.1 Atomic names

Names are used in many different ways in computer systems and in the for-

mal languages used to describe and construct them. This book is exclusively

concerned with what Needham calls ‘pure names’:

A pure name is nothing but a bit-pattern that is an identifier, and is only useful for

comparing for identity with other such bit-patterns – which includes looking up in tables

to find other information. The intended contrast is with names which yield information

by examination of the names themselves, whether by reading the text of the name or

otherwise. [. . . ] like most good things in computer science, pure names help by putting

in an extra stage of indirection; but they are not much good for anything else.

(Needham, 1989, p. 90)

We prefer to use the adjective ‘atomic’ rather than ‘pure’, because for this kind

of name, internal structure is irrelevant; their only relevant attribute is their

identity. Although such names may not be much good for anything other than

indirection, that one thing is a hugely important and very characteristic aspect

of computer science.

1

www.cambridge.org/9781107017788
www.cambridge.org


Cambridge University Press
978-1-107-01778-8 — Nominal Sets
Andrew M. Pitts 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

0.2 Support and freshness

The complexity of computer systems has stimulated the development of com-

positional methods for specifying and constructing them. If one wishes to com-

pose a whole out of parts, then one had better have mechanisms for hiding, or

at least controlling access to, the identity of the atomic names upon which each

part depends. The prerequisite for devising such mechanisms and understand-

ing their properties is a firm grasp of what it means for a piece of the system

to ‘depend’ upon an atomic name. Although there are syntactic considerations,

such as various notions of textual occurrence, this issue really concerns seman-

tics: what does it mean for the behaviour of a software system to depend upon

the identity of some atomic names?

A conventional response to this question is simply to parametrize: replace

the use of structures of some kind by functions from names to structures.

This book develops an alternative approach – a mathematical theory of ‘name

dependence’ based upon the symmetries that a structure exhibits when one

permutes names. The fundamental idea is to model systems involving atomic

names with mathematical structures for which every permutation of names in-

duces a transformation of the structure. In this case one says that permutations

act upon the structure and these actions are required to satisfy some simple

laws; this is the subject of Chapter 1. A finite collection of atomic names is

said to support such a structure if any permutation that fixes each name in the

collection induces a transformation that leaves the entire structure unchanged

with respect to whichever notion of equality of structures is of concern. This

notion of support is an old one, mathematically speaking, that we put to new

use within computer science.

From this viewpoint, a structure does not depend on a particular atomic

name if there is a support set for the structure that does not include that name.

This may seem a rather indirect way of getting at the idea of dependence upon

names, but it has advantages compared with the more common approach based

upon parametrization. In particular the use of functions means that name-

dependency is made explicit, whereas often one wants to leave it implicit and

work instead with the complementary relation of non-dependence, or fresh-

ness as we will call it. Chapters 2 and 3 develop the properties of the nominal

sets notions of support and freshness. Chapter 7 consider applications of these

notions to a fundamental technique in programming language semantics – the

use of rule-based inductive and coinductive definitions of subsets of a given set.

Chapter 9 uses freshness to model language constructs for hiding the identity

of a name outside a given scope.

www.cambridge.org/9781107017788
www.cambridge.org


Cambridge University Press
978-1-107-01778-8 — Nominal Sets
Andrew M. Pitts 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

0.3 Abstract syntax with binders 3

We turn next to the topic that was the original stimulus for developing the

theory of nominal sets.

0.3 Abstract syntax with binders

When defining a programming language it is customary to specify its concrete

syntax using context-free grammars that generate the strings of symbols that

are legal phrases in the language. Definitions of concrete syntax have to deal

with many issues to do with layout, punctuation and comments that are ir-

relevant to the meaning of programs. If one is primarily concerned with the

semantics of programming languages, then what matters is the language’s ab-

stract syntax given in terms of parse trees. The use of abstract syntax trees

enables two fundamental and inter-linked tools in programming language se-

mantics: the definition of functions on syntax by recursion over the structure of

trees; and proofs of properties of syntax by induction on the structure of trees.

These techniques have their origin in the classical notions of primitive recur-

sion and induction for the natural numbers, which were extended to abstract

syntax trees by Burstall (1969), Martin-Löf (1971) and others.

However, abstract syntax trees and their associated structural recursion and

induction principles are in one important respect not sufficiently abstract. They

do not take into account the fact that some syntax constructors involve binding

atomic names to specific scopes. Various schemes have been devised for spec-

ifying binding information. One popular option is to use some form of typed

λ-calculus (Church, 1940) as a meta-language and express binding forms of

the object-language in terms of function abstraction at the meta-level (Pfenning

and Elliott, 1988; Harper et al., 1993; Miller, 2000). Some forms of binding do

not fit comfortably into this approach; see the discussion in (Sewell et al., 2010,

section 3), which describes a flexible mechanism for incorporating binding in-

formation in grammars that is part of the Ott tool. Whatever approach is taken,

such binding specifications tell us which abstract syntax trees differ only up

to consistent renaming of bound names. This is the relation of α-equivalence,

generalized from its original use in λ-calculus.

To be a ‘binder’ in the sense that we are using it here, a language construct

should have the property that for any reasonable definition of the language’s

semantics, α-equivalent phrases have equal meanings. Thus in the presence

of binders, many syntax-manipulating operations only respect meaning if one

operates on syntax at a level of abstraction that respects α-equivalence. So it

is natural to regard α-equivalence classes of parse trees, rather than the trees

themselves, as the true abstract syntactical structures which are assigned a

www.cambridge.org/9781107017788
www.cambridge.org


Cambridge University Press
978-1-107-01778-8 — Nominal Sets
Andrew M. Pitts 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

meaning in a semantics. The problem is that unlike finite syntax trees, their

α-equivalence classes are in general infinite sets and so require indirect meth-

ods of construction, computation and proof.

One way round this problem is to devise a scheme for canonical representa-

tives of α-equivalence classes; for example by using indexes instead of names

in binders, following de Bruijn (1972). The well-known disadvantage of this

device is that it necessitates a calculus of operations on de Bruijn indexes that

does not have much to do with our intuitive view of the structure of syntax. As

a result there can be a ‘coding gap’ between statements of results about syntax

with bound names and their de Bruijn versions – and hence it is easy to get

things wrong. For this reason, most work on programming language semantics

that is intended for human rather than machine consumption sticks with ordi-

nary abstract syntax trees involving explicit bound names and uses an informal

approach to α-equivalence classes. Yet there is a pressing need for fully formal

methods when proving properties of program semantics, caused by the desire

for high assurance of correctness in situations where lives or finances are at

risk, or by complexities of scale, or both.

The informal approach is usually signalled by a form of words such as ‘we

identify expressions up to α-equivalence’; see for example Harper (2013, sec-

tion 1.2) and Remark 10.1 in this book. In this informal mode, one does not

make any notational distinction between an α-equivalence class and some cho-

sen representative of it; and if that representative is later used in some context

where its particular bound names clash in some way with those in the context,

then it is changed to an α-equivalent expression whose bound names are fresh.

The theory of nominal sets, with its notion of freshness, is able to fully formal-

ize these common informal practices with bound names via the notion of name

abstraction, discussed next.

0.4 Name abstraction

As described above, nominal sets provide a theory of implicit dependence on

names (support) and name independence (freshness) based upon the action of

name permutations on structures. If one wishes to make explicit how a struc-

ture depends upon a name, the traditional approach is to abstract and form

a function from names to structures. Quite what a ‘function from names to

structures’ means depends upon the strength of the ambient logical formal-

ism. The notion of function is not as absolute as, say, the notion of ‘ordered

pair’. This has a complicating effect on logical systems that combine func-

tional representations of binders in abstract syntax with computable functions

www.cambridge.org/9781107017788
www.cambridge.org


Cambridge University Press
978-1-107-01778-8 — Nominal Sets
Andrew M. Pitts 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

0.5 Orbit-finiteness 5

operating on those representations (Poswolsky and Schürmann, 2009; Pientka

and Dunfield, 2010). The two sorts of function have to be distinguished, lead-

ing to meta-meta-distinctions that are perhaps difficult for the average user to

appreciate.

Nominal sets contain a form of name abstraction that manages to avoid

these problems with function abstraction. Function abstraction models α- and

β-conversion (and possibly η-conversion, depending upon how extensional is

the notion of function). By contrast, name-abstraction in nominal sets mod-

els α-conversion, but only the limited form of β-conversion where one sub-

stitutes a fresh name for the bound name. This is just right for representing

α-equivalence classes of abstract syntax in a way that captures the informal

usage mentioned above. At the same time, nominal name-abstraction has a

first-order character that allows one to use formalizations of it in logical sys-

tems (Urban, 2008) and in programming languages (Shinwell, 2005b) that mix

representation of syntax up to α-equivalence with computation on that syntac-

tical data. Chapter 4 develops the properties of this kind of name abstraction.

Chapter 8 uses it to represent abstract syntax modulo α-equivalence as induc-

tive data types with associated principles of ‘α-structural’ recursion and induc-

tion. Chapters 10 and 12 explore the applications of name abstraction within

functional programming languages and to computational aspects of logic. At

the moment these applications are most accessible to the world via the Is-

abelle/HOL interactive theorem-proving system (Nipkow et al., 2002). This is

because Urban and Berghofer (2006) have implemented a ‘nominal datatype’

package for it based on the nominal sets notion of name abstraction. This is

now part of the official Isabelle software distribution and seems to be a use-

ful tool for formalizing proofs about operational semantics that allows users

to retain familiar habits and conventions concerning bound names and their

freshness; see for example Bengtson and Parrow (2009).

0.5 Orbit-finiteness

Nominal sets provide a theory for mathematical structures involving atomic

names based upon the symmetries exhibited by a structure when names are

permuted. Finiteness obviously plays a fundamental role in the study of data

structures and algorithms on them. Taking symmetry into account allows one

to extend the reach of that study to encompass structures that are infinite, but

only have finitely many different forms modulo symmetry. Name-abstractions

provide an extreme example; they are singletons modulo symmetry and this

partly explains why it is possible to use them to develop such a well-behaved

www.cambridge.org/9781107017788
www.cambridge.org


Cambridge University Press
978-1-107-01778-8 — Nominal Sets
Andrew M. Pitts 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Introduction

theory of representation and computation for syntax with binders. In general,

the property of having only finitely many orbits for the action of name per-

mutations seems to be a very useful relaxation of the notion of finiteness. It is

studied in Chapter 5. One application of orbit-finiteness is to the denotational

semantics of programs based upon the use of partial orders, where potentially

infinite behaviour is modelled as a limit of finite approximations; this is ex-

plored in Chapter 11.

0.6 Alternative formulations

One approach to formalizing the notion of freshness for names is to make

use of the technique of ‘possible worlds’ stemming from Kripke semantics

for intuitionistic and modal logics (Kripke, 1965). Structures are indexed by

worlds that contain (at least) the names that are known at that stage. One then

has to give morphisms between structures induced by moving from one world

to another, for example by adding a name not already in the current world.

The mathematics of this approach is best treated as part of the category the-

ory of presheaves (Borceux, 2008, vol. 3, chapter 2). Fiore et al. (1999) use

presheaves in their algebraic treatment of abstract syntax with binders. This

is closely related to the technique of using ‘well-scoped’ de Bruijn indexes

within functional programming and interactive theorem proving based upon

constructive type theory; see for example Pouillard (2012), who compares this

technique with nominal ones. Techniques based upon possible worlds bring

with them a certain amount of book-keeping to do with change of world, for

example when a world is weakened by adding a new name. By contrast, within

the theory of nominal sets dependence on names is implicit – it is a property

of an object (its support), rather than extra structure that has to be explicitly

specified and manipulated.

As mentioned in the Preface, nominal sets arose from presheaves, sheaves

and topos theory (Johnstone, 2002). The category of nominal sets was designed

to be a conveniently concrete presentation of an existing topos of sheaves,

known as the Schanuel topos. That uses a category of worlds consisting of

injective functions between finite ordinals, thought of as the number of differ-

ent well-scoped indexes currently in use. The passage to nominal sets involves

first replacing finite ordinals by finite subsets of some fixed, infinite collec-

tion of atomic names; and then replacing injections between finite subsets by

permutations of the whole collection of names. Neither of these steps change

things up to category-theoretic equivalence; but the final result, the category

of nominal sets that is studied in this book, is a much simpler setting in which

www.cambridge.org/9781107017788
www.cambridge.org


Cambridge University Press
978-1-107-01778-8 — Nominal Sets
Andrew M. Pitts 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

0.7 Prerequisites 7

to carry out the constructions and calculations relevant to the topics discussed

in this introduction. This is particularly noticeable when it comes to higher-

order functions; exponentials of nominal sets are appreciably easier to work

with than exponentials of the Set-valued functors that are the objects of the

Schanuel topos.

Chapter 6 describes the equivalence between the Schanuel topos and nomi-

nal sets. It also discusses some other equivalent formulations, notably the con-

cept of named set that arose in the work of Montanari and Pistore (2000) on

automated verification for mobile processes (Milner et al., 1992).

0.7 Prerequisites

A prerequisite for understanding Part One of the book, on the theory of nom-

inal sets, is some familiarity with naive set theory and higher-order logic; see

Andrews (2002), for example.

We also assume a knowledge of the basics of category theory. The first work

on nominal sets (Gabbay and Pitts, 1999, 2002; Gabbay, 2000) took a set-

theoretic approach. It used FM-sets,1 the cumulative hierarchy of hereditarily

finitely supported sets devised by Fraenkel in the 1920s and used by him and

Mostowski to get independence results for Zermelo–Fraenkel set theory with

atoms; see Gabbay (2011) for a discussion of these historical sources. Nomi-

nal sets are essentially the FM-sets that depend upon no particular names (that

is, whose support is empty). On the other hand the universe of FM-sets can

be given a category-theoretic construction; and an ‘algebraic’ set-theory (Joyal

and Moerdijk, 1995) can be developed for it within a category of (large) nomi-

nal sets. Should one develop the theory of nominal sets using set theory or cat-

egory theory; in other words, should one be ‘element-oriented’ or ‘morphism-

oriented’? Here both approaches are used, as appropriate. Nevertheless, em-

phasis is placed upon category-theoretic concepts, particularly the use of var-

ious universal properties that characterize constructions uniquely up to iso-

morphism. So familiarity with the basic concepts of category theory – cate-

gory, functor, natural transformation, adjunction and equivalence – is assumed.

There are many suitable introductions, some aimed specifically at computer

science applications, such as those by Pierce (1991) and Crole (1993). The

classic text by MacLane (1971) still holds its own; and the three volumes by

Borceux (2008) are usefully comprehensive. Some familiarity is needed with

1 The term ‘nominal set’ was first used by Pitts (2003).

www.cambridge.org/9781107017788
www.cambridge.org


Cambridge University Press
978-1-107-01778-8 — Nominal Sets
Andrew M. Pitts 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Introduction

the connections between category theory, typed λ-calculus and higher-order

logic, as described by Lambek and Scott (1986), for example.

The distinctive feature of nominal sets is their reliance upon some simple

mathematics to do with symmetric groups and their actions on sets. This is not

material that is likely to be familiar to the intended reader. So the book contains

a self-contained account of the small amount of this well-developed topic that

is needed.

For Part Two of the book, on computer science applications of nominal sets,

the reader needs to be familiar with the basic techniques of programming lan-

guage semantics; see for example Winskel (1993).

0.8 Notation

Being about a new subject, the literature on nominal sets does not always agree

on matters of notation. The subject-specific notations used in this book are

collected in an Index of notation. Apart from that we use more-or-less standard

notations and conventions from logic, naive set theory and category theory,

some of which are listed below.

Logic We write ϕ ∧ ψ for conjunction, ϕ ∨ ψ for disjunction, ϕ ⇒ ψ for

implication, ϕ ⇔ ψ for bi-implication, and ¬ϕ for negation. Quantification is

written (Q x) ϕ with the convention that the scope of the quantifier Q extends

to the right as far as possible. So, for example, (∀x) ϕ ∧ ψ means (∀x) (ϕ ∧ ψ)

rather than ((∀x) ϕ) ∧ ψ.

Sets We denote by X − Y the set subtraction, {x ∈ X | x � Y}.

Functions Function application is written without punctuation: F x means the

result of applying function F to argument x. Multiple applications associate

to the left. So, for example, G F x means (G F) x, rather than G (F x). If an

expression e(x) denotes an element of a set Y as x ranges over the elements of

a set X, then the function from X to Y that it determines will be denoted by

either of the notations

x ∈ X �→ e(x) ∈ Y or λx ∈ X � e(x) .

When the set X has some structure, we use notations for patterns; for example

if X = X1 × X2 is a cartesian product, we write λ(x1, x2) ∈ X1 × X2 � e(x1, x2).

www.cambridge.org/9781107017788
www.cambridge.org


Cambridge University Press
978-1-107-01778-8 — Nominal Sets
Andrew M. Pitts 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

0.8 Notation 9

Categories If C is a category, its collection of objects will also be denoted C.

If X and Y are objects of C, then we write f ∈ C(X,Y), or just f : X → Y , to

indicate that f is a morphism in C whose domain is X and whose codomain

is Y . The identity morphism for X is written as idX , or just id. Composition is

written in application order: g ◦ f ∈ C(X,Z) denotes the composition of the

morphism f ∈ C(X,Y) followed by the morphism g ∈ C(Y,Z).

www.cambridge.org/9781107017788
www.cambridge.org

