A large body of knowledge has accumulated in recent years on the cognitive processes underlying language, much of which comes from studies of Indo-European languages, in particular English. This ground-breaking volume explores the languages of South and Southeast Asia, which differ significantly from Indo-European languages in their grammar, lexicon and spoken forms. South and Southeast Asian Psycholinguistics raises new questions in psycholinguistics and enables readers to re-evaluate previous models in light of new research. With 36 chapters divided into three parts – Language acquisition, Language processing and Language and brain – it examines contemporary topics alongside new findings in areas such as first and second language acquisition, the development of literacy, the diagnosis of language and reading disorders, and the relationships between language, brain, culture and cognition. It will be invaluable to all those interested in the languages of South and Southeast Asia, as well as to psychologists, linguists, educationalists, speech therapists and neuroscientists.

HEATHER WINSKEL is a Senior Lecturer in Psychology at Southern Cross University, Australia.

PRAKASH PADA KAN NAYA is Professor of Psychology at the University of Mysore, India.
South and Southeast Asian Psycholinguistics

Edited by
Heather Winskel

and

Prakash Padakannaya
Contents

List of figures \hspace{1em} \hspace{1em} page ix
List of tables \hspace{1em} \hspace{1em} xiv
List of contributors \hspace{1em} \hspace{1em} xvii

Introduction \hspace{1em} 1

HEATHER WINSKEL

I Language acquisition

(i) Spoken language

1 Studying language acquisition cross-linguistically \hspace{1em} 19
 SABINE STOLL AND ELENA LIEVEN

2 Infant-directed speech: social and linguistic pathways in tonal
 and non-tonal languages \hspace{1em} 36
 CHRISTINE KITAMURA

3 Pragmatic development of Mandarin-speaking young children:
 focus on communicative acts between children and
 their mothers \hspace{1em} 45
 JING ZHOU

4 Referential forms in Thai children’s narratives \hspace{1em} 52
 THEERAPORN RATITAMKUL

5 The acquisition of tense and aspect \hspace{1em} 60
 YASUHIRO SHIRAI

6 The acquisition of Malay numeral classifiers \hspace{1em} 71
 KHAZRIYATI SALEHUDDIN

7 The acquisition of Vietnamese numeral classifiers \hspace{1em} 79
 JENNIE TRAN
Contents

viii

1 An overview of the acquisition of Malay wh-questions
Norhaida Aman 89

2 Marking plurals: the acquisition of nominal number inflection in Marathi
Shalmalee Pitale and Vaijayanthi M. Sarma 99

3 Issues in the acquisition of Tamil verb morphology
Vaijayanthi M. Sarma 110

4 Fast mapping of novel words in bi/multilinguals
Vishnu K. K. Nair, Sunil Kumar Ravi, Sapna Bhat and Shyamala K. Chengappa 124

5 Studies on the acquisition of morphology and syntax among Malay children in Malaysia: issues, challenges and needs
Rogayah A. Razak 133

6 Issues in developing grammatical assessment tools in Chinese and Malay for speech and language therapy
Lixian Jin, Rogayah A. Razak, Janet Wright and John Song 145

(ii) Written language

7 Reading and reading acquisition in European languages
Brian Byrne, Stefan Samuelsson and Richard K. Olson 159

8 Learning to read and write in Thai
Heather Winskel 171

9 Learning to read and write in Malaysian/Indonesian: a transparent alphabetic orthography
Heather Winskel and Lay Wah Lee 179

10 Literacy in Kannada, an alphasyllabic orthography
R. Malatesha Joshi 184

11 Reading in Tamil: a more alphabetic and less syllabic akshara-based orthography
Bhuvaneshwari B. and Prakash Padakannaya 192

12 Akshara–syllable mappings in Bengali: a language-specific skill for reading
Shruti Sircar and Sonali Nag 202
Contents

20 Diversity in bilingual children’s spelling skill development: the case of Singapore
SUSAN RICKARD LIOW

21 Tones and voice registers
ARTHUR S. ABRAMSON

22 How to compare tones
NAN XU RATTANASON, VIRGINIE ATTINA, BENJAWAN KASISOPA AND DENIS BURNHAM

23 Studying sentence generation during scene-viewing in Hindi with eye-tracking
RAMESH MISHRA

24 Thai-specific and general reading processes in developing and skilled Thai readers
JEESUN KIM AND CHRIS DAVIS

25 Eye movement guidance in reading unspaced text in Thai and Chinese
JIE-LI TSAI

26 Southeast Asian writing systems: a challenge to current models of visual information processing in reading
RONAN REILLY

27 Preferred Argument Structure and Thai varieties of English: evidence of cognitive processing limitations?
THOM HUEBNER

28 Cross-language perception of word-final stops
KIMIKO TSUKADA

29 Uncovering bilingual memory representations
WISTON D. GOH, LIDIA SUÁREZ AND KELLY YEO

30 Eye movements and reading in the alphasyllabic scripts of South and Southeast Asia
HEATHER WINSKEL, PRAKASH PADAKANNAYA AND APARNA PANDEY
III Language and brain

31 Aphasia to imaging: the neurolinguistic endeavor as it reflects on South and Southeast Asian languages
LORAIN K. OBLER AND AVANTHI NIRANJAN PAPLIKAR

32 Neural bases of lexical tones
JACKSON T. GANDOUR AND ANANTHANARAYAN KRISHNAN

33 Hemispheric asymmetry in word recognition for a right-to-left script: the case of Urdu
CHAITRA RAO, JYOTSNA VAID AND HSIN-CHIN CHEN

34 The Declarative Procedural model of language: a new framework for studying the non-inflecting languages of Southeast Asia?
TOMASINA OH

35 Language-mixing in bilingual aphasia: an Indian perspective
SAPNA BHAT AND SHYAMALA CHENGAPPA

36 The relationship between language and cognition
HEATHER WINSKEL AND SUDAPORN LUKSANEEYANAWIN

References

Index
Figures

Figure 2.1 Model showing how infant-directed speech is modified according to the cultural background of the mother, and developmental forces in the infant. page 39

Figure 2.2 Mean F0 (top panel) and pitch range (bottom panel) for English and Thai at birth, 3, 6, 9 and 12 months, and in AD speech. 42

Figure 2.3 Mean F0 (top panel) and pitch range (bottom panel) in speech to Thai and English boys and girls at birth, 3, 6, 9 and 12 months, and in AD speech. 43

Figure 3.1 A comparison of three core types of social interchange in Chinese and American children. 47

Figure 6.1 Classification of Malay numeral classifiers (adapted from Salehuddin & Winskel, 2008). 73

Figure 6.2 The different types of responses made by children in the counting production task (Salehuddin & Winskel, 2009, p. 304). 74

Figure 10.1 Production across different person/number/gender in the corpus. 116

Figure 10.2 Default versus real agreement. 117

Figure 10.3 Overt NPs versus pro. 119

Figure 12.1 Verb phrase developmental patterns among young Malay children. 142

Figure 12.2 Development of level of utterances according to stages of LARSP. 143

Figure 13.1 The MCUS score sheet. 151

Figure 13.2 MCUS scores for 1 year 3 month to 1 year 5 months old Mandarin-speaking children in the Free Conversation task. 152

Figure 13.3 MCUS scores for 4 year 1 month to 4 year 11 months old Mandarin-speaking children in the Free Conversation task. 153
Figure 19.1 Sample of reading errors associated with akshara–syllable mismatch. 204
Figure 19.2 Children’s success rate in syllable processing (Panel A) and phoneme processing (Panel B) on simple and complex syllables. 208
Figure 19.3 Phoneme deletion errors in CCVC non-words. 210
Figure 21.1 For the range from 50 to 500 Hz, the non-linear relation between Hertz and semitones. From Nolan (2003) with permission. 225
Figure 21.2 Electroglottography of a Mon speaker. Upper graph: Two glottal pulses from /klān/ “naughty” in Breathy voice. Lower graph: Two glottal pulses from / klan/ “lick” in Clear (Modal) voice. From A.S. Abramson, G. Ramsay and L. Luangthongkum (unpublished data). 226
Figure 21.3 The five tones of Standard Thai for much of the twentieth century. Adapted from Abramson (1962). 229
Figure 22.1 Tone triangles plotted along F0 onset and offset dimensions in 3 months, 6 months and 9 months IDS and ADS for 3–6–9 cohort, and 6 months, 9 months and 12 months IDS and ADS for 6–9–12 cohort. 239
Figure 22.2 Tone trajectories over time of Thai children’s tone productions. 241
Figure 22.3 Mean tone triangle areas (and standard errors) of Thai children’s tone productions over six developmental age periods. 242
Figure 22.4 Tone differentiation plots across age showing the distance between each Thai tone and all others combined. 242
Figure 22.5 Tone ellipses for Mandarin, Thai, Cantonese for three tone space representations, F0 onset/F0 offset, F0 onset/F0 velocity, and F0 onset/F0 acceleration, with mean Bhattacharyya distances across all tone pairs in bold. 245
Figure 23.1 Sample pictures used in the experiment in different conditions. 251
Figure 23.2 Proportion of fixation to the different types of pictures for children and adults from the onset of the display till 8000 ms. 252
Figure 23.3 Mean fixations to the verb and subject regions for the different picture types for children and adults. 253
Figure 24.1 The top left panel shows Thai consonants grouped by similar form. Note that although Thai dictionaries list
44 consonant symbols, ฃ and ฅ are obsolete and have been replaced by ข and ค. The bottom panel shows 18 vowel symbols (for which 32 vowel forms can be constructed by combining the vowels with three consonants). Vowels and their components can be positioned before, after, below or above initial consonant(s) and these positions can also be combined. Note, here the consonant letter อ is used as a place-holder to indicate the vowel position; the consonants used to compose vowels are ย, ว and อ. The top right panel shows an example of how consonants and vowels can be written in various horizontal and vertical orthographic positions.

Figure 26.1 A schematic summary of the E-Z Reader model. Starting at the bottom, the current fixation feeds information to the lexical processing and saccade programming module, which operate in parallel. A saccade is initiated after a low-level assessment of a word’s familiarity. This can be overridden if the shift in attention also results in a successful ‘familiarity’ check, thus accounting for the phenomenon of word skipping. Note, however, that saccades are triggered by lexical processing.

Figure 26.2 A schematic summary of the SWIFT model. In the SWIFT model lexical processing occurs within a four-word attentional gradient. Saccadic programmes are initiated autonomously, by a timing mechanism, so as to maintain a mean rate of eye movements. The inhibitory link allows word identification to extend the duration of the current fixation (via increasing the duration of the time interval between saccades) if the word being fixated is difficult to process.

Figure 26.3 The Glenmore model has a connectionist architecture and comprises three main components: (1) an interactive activation network that is responsible for identifying words; (2) a saliency map that selects saccade targets; and (3) the saccade generator. Activation of the input units is propagated forward to the letter and saliency units so as to identity and localize the individual letters in the 30-unit input array. Letter activation is then spread to the word units (which provide top–down modulation of the letter units), the saliency units and a fixate centre unit.
A saccade is initiated to the target location that corresponds to the most active saliency unit whenever the activation of the fixate centre unit reaches a certain threshold. The top panel gives an overview of the architecture, the bottom panel a sample configuration for a specific fixation.

Figure 28.1 Mean discrimination scores for Thai and English stimuli by six groups of listeners. The brackets enclose ± 1 SE.

Figure 28.2 Mean discrimination scores for English stimuli by four groups of listeners. The brackets enclose ± 1 SE.

Figure 28.3 Mean discrimination scores for Thai stimuli by four groups of listeners. The brackets enclose ± 1 SE.

Figure 29.1 Proportion of foil intrusions across conditions in Suárez and Goh (2007).

Figure 29.2 Pattern of spread of activation in the cross-language conditions.

Figure 29.3 Proportion of foil intrusions across conditions in Yeo (2007).

Figure 32.1 Positron emission tomography (PET) images show increased activity in the left anterior insular cortex when Chinese natives discriminate pitch patterns embedded in Mandarin words (top panel), but in the homologous area of the RH for those embedded in English words (bottom panel). In contrast, English speakers’ activity is circumscribed to the RH regardless of lexical function. (Adapted from *Journal of Neuroscience*, 24(41), 2004, 9157, with permission from Society of Neuroscience.)

Figure 32.2 Activation in within-category deviant vs. across-category deviant contrasts elicited from a tonal continuum ranging from the Mandarin high rising to falling tone. Regions of activity are shown for within-category > across-category (panel A, STG; panel B, right STG) and across-category > within-category deviants (panel A, MTG; panel B, left MTG). STG, superior temporal gyrus; MTG, middle temporal gyrus. (Adapted from *PLoS One*, 6(6), 2011.)

Figure 32.3 Peak amplitude and latency of MMN and P3a show that pitch contour and pitch height are important dimensions used in early processing of Cantonese tones. MMNs were larger in tonal pairs that differ greatly in initial pitch height (height–large, height–small).
In contrast, pitch contour influenced the latency of P3a (contour–early, contour–late). FCZ, frontal–central electrode recording site. (Adapted from *Neuroscience Letters*, 487(3), 2011, 270, with permission from Elsevier Press.)

Figure 32.4 Discriminant analysis of pitch strength indicates that moderate rising pitch is important for distinguishing tone language from non-tone language speakers. (Adapted from *Journal of Neurolinguistics*, 23(1), 2010, 89, with permission from Elsevier Press.)

Figure 32.5 Comparisons of spectral f_0 magnitudes reveal that pitch encoding is enhanced in musicians as compared to Chinese or non-musicians in the rapidly changing portion of Mandarin tone 2 (high rising) corresponding to the note B♭ of a discrete musical scale. (Adapted from *Journal of Cognitive Neuroscience*, 23(2), 2011, 431, with permission from MIT Press.)

Figure 33.1 An illustration of the same word written in Hindi (Devanagari) and Urdu (Nastaliq) scripts.
Tables

Table 2.1 Percentage correct of lexical tone in ID speech at birth, 3, 6, 9, 12 months and in AD speech in the utterance-initial and utterance-final position

Table 3.1 The development of communicative acts of Chinese young children at the age of 14 to 32 months

Table 4.1 Referential forms and discourse contexts

Table 5.1 Preference of verb semantics in the use of -te i-(ru) by children and caregivers

Table 5.2 Distribution of lexical aspect with -ko iss- by children

Table 5.3 Distribution of lexical aspect with -ko iss- by caregivers

Table 5.4 Use of kam0laŋ0 (progressive) and le:w3 (perfective) markers by lexical aspect and age

Table 6.1 Malay shape-based numeral classifier acquisition based on the mean number of correct production responses across all children’s age groups (standard deviations are in parentheses) (Salehuddin & Winskel, 2009a)

Table 6.2 Malay shape-based numeral classifier acquisition based on the mean number of correct matching comprehension responses across all age groups (Salehuddin & Winskel, 2009b)

Table 7.1 The children in the longitudinal study

Table 7.2 The children in the cross-sectional study

Table 7.3 Proposed order of emergence of Vietnamese classifiers

Table 7.4 Errors

Table 8.1 Percent of correctly repeated responses

Table 8.2 Number of wh-questions in terms of wh-word and question structure by two Singapore Malay children and their mothers

Table 8.3 Proportion of in situ versus moved wh-questions across wh-words
List of tables

Table 8.4 Proportion of in situ versus moved wh-questions across wh-words 94
Table 8.5 Means of embedded responses given by the children 97
Table 9.1 Noun classes in Marathi 101
Table 9.2 Results for testing the plural of real words 106
Table 9.3 Tokens for non-words 106
Table 9.4 Results for testing of plurals for non-words 108
Table 10.1 Match between predicate and subject case 117
Table 10.2 Imperative forms in Tamil 120
Table 11.1 Analysis of word errors in the L1 and L2 130
Table 11.2 Analysis of word errors in the L1, L2 and L3 130
Table 12.1 Match between predicate and subject case 117
Table 12.2 Mean and standard deviation by age group for total MPLAT raw scores 141
Table 13.1 Available local SLT assessment tools in Malay and Mandarin Chinese 148
Table 15.1 Thai initial consonants (IPA symbols are in parentheses) 172
Table 15.2 Thai vowel expressions classified in terms of vowel combination types 173
Table 18.1 A comparison of the characteristics of a traditional alphabet and a syllabary 193
Table 19.1 Examples of children's responses on non-word reading, syllable substitution and phoneme segmentation tasks 207
Table 21.1 List of Mon word pairs spoken four or five times each by four male native speakers 232
Table 22.1 Chao tone letters assignment for Cantonese syllable /fu/ (from Rose, 2000) 234
Table 22.2 Chao tone letters assignment for Thai syllable /kha/ 234
Table 22.3 Chao tone letters assignment for Mandarin syllable /ma/ (from Chao, 1948) 234
Table 27.1 Preferred Argument Structure constraints 286
Table 27.2 Non-proficient versus proficient speakers 290
Table 27.3 Number of transitive clauses with 0, 1, or 2 lexical core arguments – low- and high-proficiency speakers 291
Table 27.4 Distribution of lexical core arguments across A, S, and O roles for low- and high-proficiency informants 292
Table 27.5 Number and percentage of all arguments in A, S, and O roles that are lexical 292
Table 27.6 Number of verbs with 0, 1, or 2 new arguments – low- and high-proficiency speakers 293
Table 27.7 Number of transitive verbs with two new arguments 293
xvi List of tables

Table 27.8 Number and percentage of arguments in each role that are new 294
Table 27.9 Number and percentage of all new arguments that appear in each grammatical role 294
Table 27.10 Pronominal forms used by informants 295
Table 29.1 Structure of the critical two-block trials in the short-term cued-recall paradigm 306
Table 29.2 Manipulations of past studies using the short-term cued-recall paradigm 307
Table 29.3 Manipulating phonological and visual similarity across foils and target fillers 309
Table 29.4 Manipulating cross-language phonological similarity across targets and foils 312
Contributors

ARTHUR S. ABRAMSON, Haskins Laboratories and University of Connecticut
NORHAIDA AMAN, English Language and Literature Academic Group, National Institute of Education, Nanyang Technological University
VIRGINIE ATTINA, Marcs Institute, University of Western Sydney
SAPNA BHAT, Guest Faculty, University of Southern Denmark
BHUVANESHWARI B., Department of Studies in Psychology, University of Mysore
DENIS BURNHAM, Marcs Institute, University of Western Sydney
BRIAN BYRNE, School of Behavioural, Cognitive and Social Sciences, University of New England
HSIN-CHIN CHEN, Department of Psychology, National Chung Cheng University
SHYAMALA K. CHENGAPPA, Department of Speech Language Pathology, All India Institute of Speech and Hearing
CHRIS DAVIS, Marcs Institute, University of Western Sydney
JACKSON T. GANDOUR, Department of Speech Language Hearing Sciences, Purdue University
WINSTON D. GOH, Department of Psychology, National University of Singapore
THOM HUEBNER, Department of Linguistics and Language Development, San Jose State University
LIXIAN JIN, Division of Speech and Language Therapy, De Montfort University, Leicester
JING ZHOU, Faculty of Early Education, East China Normal University
R. MALATESHA JOSHI, College of Education and Human Development, Texas A&M University
List of contributors

NAN XU RATTANASONE, Child Language Laboratory, Linguistics Department, Macquarie University

SUNIL KUMAR RAVI, Department of Speech Language Pathology, All India Institute of Speech and Hearing

ROGAYAH A. RAZAK, Speech Sciences Program, School of Rehabilitational Sciences, Faculty of Health Sciences, National University of Malaysia

RONAN REILLY, Department of Computer Science, National University of Ireland

SUSAN RICKARD LIOW, Division of Graduate Medical Studies, National University of Singapore

KHAZRIYATI SALEHUDDIN, School of Language Studies and Linguistics, National University of Malaysia

STEFAN SAMUELSSON, Department of Behavioral Science, Linköping University, Sweden

VAIJAYANTHI M. SARMA, Department of Humanities and Social Sciences, Indian Institute of Technology (ITTI)

YASUHIRO SHIRAI, Department of Linguistics, University of Pittsburgh

SHRUTI SIRCAR, Department of Linguistics and Contemporary English, The English and Foreign Languages University, Hyderabad

JOHN SONG, Division of Speech and Language Therapy, De Montfort University, Leicester

SABINE STOLL, Psycholinguistics Research Unit, University of Zurich

LIDIA SUÁREZ, Department of Psychology, James Cook University, Singapore

JENNIE TRAN, Department of Linguistics, University of Hawaii

JIE-LI TSAI, Department of Psychology, National Chengchi University

KIMIKO TSUKADA, Department of International Studies, Macquarie University

JYOTSNA VAID, Department of Psychology, Texas A&M University

HEATHER WINSKEL, Department of Psychology, School of Health and Human Sciences, Southern Cross University

JANET WRIGHT, Division of Speech and Language Therapy, De Montfort University, Leicester

KELLY YEO, Department of Psychology, National University of Singapore