Contents

- **List of contributors**
- **Preface**

Part I Communication architectures and models for green radio networks

1 Fundamental trade-offs on the design of green radio networks

Yan Chen, Shunqing Zhang, and Shugong Xu

1.1 Introduction 3

1.2 Insight from Shannon’s capacity formula 5

1.2.1 SE–EE trade-off 6

1.2.2 BW–PW trade-off 7

1.2.3 DL–PW trade-off 8

1.2.4 DE–EE trade-off 10

1.2.5 Summary 10

1.3 Impact of practical constraints 12

1.4 Latest research and future directions 14

1.4.1 SE–EE trade-off 14

1.4.2 BW–PW trade-off 16

1.4.3 DL–PW trade-off 17

1.4.4 DE–EE trade-off 18

1.5 Conclusion 20

2 Algorithms for energy-harvesting wireless networks

Vinod Sharma, Utpal Mukherji, and Vinay Joseph

2.1 Introduction 24

2.2 Energy-harvesting technologies 26

2.3 Point-to-point channel 28

2.3.1 Model and notation 28

2.3.2 Stability 29

2.3.3 Delay optimal policies 30

2.3.4 Generalizations 31

2.3.5 Simulations 32
Contents

2.3.6 Model with sleep option 34
2.3.7 Fundamental limits of transmission 37

2.4 MAC policies 39
2.4.1 Orthogonal channels 40
2.4.2 Opportunistic scheduling for fading channels: orthogonal channels 40
2.4.3 Opportunistic scheduling for fading channels: CSMA 42
2.4.4 Simulations for MAC protocols 42

2.5 Multi-hop networks 44
2.5.1 Problem formulation 45
2.5.2 Simulations 48

2.6 Conclusion 50

3 PHY and MAC layer optimization for energy-harvesting wireless networks 53
Neelesh B. Mehta and Chandra R. Murthy
3.1 Introduction 53
3.2 Physical layer design 55
3.2.1 No CSI at transmitter and retransmissions 55
3.2.2 Power management with channel state information 61
3.2.3 Simulation results 66

3.3 Cross-layer implications in a multi-node network 67
3.3.1 Multiple access selection algorithms 69
3.3.2 Energy harvesting, storage, and usage model 70
3.3.3 Energy neutrality implication 70
3.3.4 Performance analysis 70
3.3.5 Numerical results 73

3.4 Conclusion 74

4 Mechanical relaying techniques in cellular wireless networks 78
Panayiotis Kolios, Vasilis Friderikos, and Katerina Papadaki
4.1 Introduction 78
4.2 Background 79
4.2.1 DTN architecture 79
4.2.2 Routing in DTNs 80

4.3 Mechanical relaying 81
4.3.1 Mobile internet traffic mix 83
4.3.2 Mechanical relaying strategies 86

4.4 Real-world measurements 89
4.5 Related standardization efforts 92
4.6 Conclusion 93
Part II Physical communications techniques for green radio networks 97

5 Green modulation and coding schemes in energy-constrained wireless networks 99
 Jamshid Abouei, Konstantinos N. Plataniotis, and Subbarayan Pasupathy
 5.1 Introduction 99
 5.2 System model and assumptions 101
 5.2.1 Performance metric 101
 5.2.2 Channel model 102
 5.3 Energy consumption of uncoded scheme 103
 5.3.1 M-ary FSK 103
 5.3.2 M-ary QAM 106
 5.3.3 Offset-QPSK 108
 5.3.4 Numerical evaluations 110
 5.4 Energy-consumption analysis of LT coded modulation 113
 5.4.1 Energy efficiency of coded system 114
 5.4.2 Energy optimality of LT codes 116
 5.5 Numerical results 118
 5.5.1 Experimental setup 118
 5.5.2 Optimal configuration 119
 5.6 Conclusion 122

6 Cooperative techniques for energy-efficient wireless communications 125
 Osama Amin, Sara Bavarian, and Lutz Lampe
 6.1 Introduction 125
 6.2 Energy-efficiency metrics for wireless networks 126
 6.2.1 Instantaneous EE metrics 128
 6.2.2 Average EE metrics 129
 6.3 Energy-efficient cooperative networks 130
 6.3.1 Single relay cooperative network 131
 6.3.2 Multi-relay cooperative network 136
 6.3.3 Multi-hop cooperative network 137
 6.4 Optimizing the EE performance of cooperative networks 139
 6.4.1 Modulation constellation size 139
 6.4.2 Power allocation 141
 6.5 Energy efficiency in cooperative base stations 143
 6.6 Conclusion 146

7 Effect of cooperation and network coding on energy efficiency of wireless transmissions 150
 Nof Abuzainab and Anthony Ephremides
 7.1 Introduction 150
 7.2 Relay cooperation in single link wireless transmissions 152
Contents

7.2.1 System model 152
7.2.2 Cooperation protocols 153
7.3 User cooperation in wireless multicast transmissions 155
7.3.1 System model 155
7.3.2 Cooperation protocols 156
7.4 Energy-cost minimization 158
7.5 Stable throughput computation 158
7.6 Performance evaluation 159
7.6.1 Relay cooperation 159
7.6.2 User cooperation 161
7.7 Conclusion 162

Part III Base station power-management techniques for green radio networks 165

8 Opportunistic spectrum and load management for green radio networks 167
Oliver Holland, Christian Facchini, A. Hamid Aghvami, Orlando Cabral, and Fernando Velez
8.1 Introduction 167
8.2 Opportunistic spectrum and load management concepts 169
8.2.1 Opportunistic load management to power down radio network equipment 169
8.2.2 Opportunistic spectrum management to improve propagation characteristics 171
8.2.3 Power saving by channel bandwidth increase or better bandwidth balancing 173
8.3 Assessment of power-saving potential 174
8.3.1 Example reflecting GSM networks 174
8.3.2 Example reflecting LTE networks 180
8.3.3 Example reflecting HSDPA networks 185
8.3.4 Power saving by channel bandwidth increase or better bandwidth balancing 187
8.4 Conclusion 188

9 Energy-saving techniques in cellular wireless base stations 190
Tao Chen, Honggang Zhang, Yang Yang, and Kari Horneman
9.1 Introduction 190
9.2 Energy-consumption model of RBS 191
9.3 EE metric 192
9.4 RBS energy-saving methods 194
9.4.1 Time-domain approaches 195
9.4.2 Frequency-domain approaches 196
9.4.3 Spatial-domain approaches 197
9.4.4 Performance comparison 198
9.5 Layered structure for energy saving
9.5.1 System model and assumptions
9.5.2 Energy-consumption model of RBS
9.5.3 Energy-aware handover mechanism
9.5.4 Simulation study
9.6 Conclusion

10 Power management for base stations in a smart grid environment
Xiao Lu, Dusit Niyato, and Ping Wang

10.1 Introduction
10.2 Power management for wireless base station
10.2.1 Green communications in centralized wireless networks
10.2.2 Approaches for power management in a base station
10.2.3 Open research issues
10.3 Power-consumption model for a base station
10.3.1 Components of a base station
10.3.2 Assumptions and power-consumption model for a macro base station
10.3.3 Assumptions and power-consumption model for a micro base station
10.4 Optimization of power management in a smart grid environment
10.4.1 System model
10.4.2 Demand-response for base station in smart grid
10.4.3 Optimization formulation for power management
10.4.4 Performance evaluation
10.5 Conclusion

11 Cooperative multicell processing techniques for energy-efficient cellular wireless communications
Mohammad Reza Nakhai, Tuan Anh Le, Auon Muhammad Akhtar, and Oliver Holland

11.1 Introduction
11.2 Cell splitting
11.3 A multicell processing model
11.3.1 Transmission and channel model
11.3.2 User-position-aware multicell processing
11.4 Multicell beamforming strategies
11.4.1 MBF using instantaneous CSIT
11.4.2 MBF using second-order statistical CSIT
11.4.3 An iterative MBF using second-order statistical CSIT
11.5 Coordinated beamforming
11.6 Backhaul protocol
11.6.1 A protocol for information circulation in the backhaul
Contents

11.6.2 Power calculation for the ring protocol 251
11.6.3 An effective sum-rate 252
11.7 Performance evaluation 252
11.7.1 Performance evaluation under ideal backhaul 252
11.7.2 Performance evaluation under limited backhaul 254
11.8 Cooperative routing 255
11.8.1 Power-aware cooperative routing algorithm 256
11.9 Conclusion 258

Part IV Wireless access techniques for green radio networks

12 Cross-layer design of adaptive packet scheduling for green radio networks 263
Ashok Karmokar, Alagan Anpalagan, and Ekram Hossain
12.1 Introduction 263
12.2 Related work 264
12.3 Importance of cross-layer optimized design 265
12.4 Why cross-layer adaptation is important for green radio networks 266
12.5 Cross-layer interactions, models, and actions 267
12.6 Cross-layer vs. single-layer adaptation techniques 271
12.7 How to solve the cross-layer design problem 273
12.8 Power savings in the cross-layer optimized system 276
12.9 Other literature on energy-efficient cross-layer techniques 278
12.10 Challenges and future directions 281
12.11 Conclusion 282

13 Energy-efficient relaying for cooperative cellular wireless networks 286
Yifei Wei, Mei Song, and F. Richard Yu
13.1 Introduction 286
13.2 Energy saving in cellular wireless networks 288
13.2.1 Energy-saving techniques 288
13.2.2 Energy-efficiency criteria 289
13.3 Energy-efficient cooperative communication based on selective relay 290
13.3.1 Relay selection schemes 291
13.4 System model for the relay selection problem 293
13.4.1 S2R channel 294
13.4.2 R2D channel 294
13.4.3 Energy model 295
13.4.4 Objectives 296
13.5 Problem formulation 296
13.5.1 Relay states 296
13.5.2 System reward 297
13.5.3 Solution to the restless bandit problem 298
13.6 Distributed relay selection scheme
 13.6.1 Available relay candidates 300
 13.6.2 Relay selection process 301
 13.6.3 Cost evaluation 302
13.7 Simulation results and discussions
 13.7.1 System reward 303
 13.7.2 Error propagation mitigation 303
 13.7.3 Spectral efficiency improvement 305
 13.7.4 Network lifetime 305
13.8 Conclusion 306

14 Energy performance in TDD-CDMA multi-hop cellular networks 309
Hoang Thanh Long, Xue Jun Li, and Peter Han Joo Chong
14.1 Introduction 309
14.2 Structure of relay stations and power consumption 309
 14.2.1 Random relay station (RRS) structure 311
14.3 Time-slot allocation schemes 312
 14.3.1 Fixed time-slot allocation (FTSA) 313
 14.3.2 Dynamic time-slot allocation (DTSA) 313
 14.3.3 Multi-link fixed time-slot allocation (ML-FTSA) 314
 14.3.4 Multi-link dynamic time-slot allocation (ML-DTSA) 315
14.4 System model 315
14.5 Simulation results and discussions
 14.5.1 Blocking and dropping probabilities for high and low data rate traffic 320
 14.5.2 Energy consumption for single-hop and multi-hop transmission using FRS 322
 14.5.3 Energy consumption for RRS structure 325
14.6 Conclusion 328

15 Resource allocation for green communication in relay-based cellular networks 331
Umesh Phuyal, Satish C. Jha, and Vijay K. Bhargava
15.1 Introduction 331
15.2 Enabling green communication in cellular wireless networks 332
 15.2.1 Component level 332
 15.2.2 Equipment level 332
 15.2.3 Network level 332
 15.2.4 Computational complexity versus transmit-power-saving 333
15.3 Relay-based green CCN 333
 15.3.1 Implementation issues and challenges 334
 15.3.2 Advantages of fixed relay-based CCN 336
 15.3.3 Green performance metrics for resource allocation 337
15.4 Resource-allocation schemes for CCN: a brief survey 337
 15.4.1 Throughput maximization schemes 338
 15.4.2 QoS-aware transmit power minimization schemes 338
 15.4.3 Energy-aware green schemes 339
15.5 Design of a green power allocation scheme 339
 15.5.1 System model 340
 15.5.2 Green power allocation scheme 342
 15.5.3 Performance analysis of GPA scheme 344
 15.5.4 Adaptive interrupted transmission 345
 15.5.5 Simulation results 345
15.6 Green performance versus system capacity 351
 15.6.1 Performance analysis 352
15.7 Conclusion 354

Part V Green radio test-bed, experimental results, and standardization activities 357

16 How much energy is needed to run a wireless network? 359
Gunther Auer, Vito Giannini, István Gödor, Oliver Blume, Albrecht Fehske, Jose Alonso Rubio, Pål Frenger, Magnus Olsson, Dario Sabella, Manuel J. Gonzalez, Muhammad Ali Imran, and Claude Desset
16.1 Introduction 359
16.2 Energy-efficiency evaluation framework (E3F) 360
 16.2.1 Small-scale, short-term system-level evaluations 361
 16.2.2 Global E3F 361
16.3 Power model 363
 16.3.1 Base station power-consumption breakdown 363
 16.3.2 BS power consumption at variable load 366
16.4 Traffic model 367
 16.4.1 Deployment areas of Europe 367
 16.4.2 Long-term large-scale traffic models 368
 16.4.3 Statistical short-term traffic models 372
16.5 Green metrics 372
 16.5.1 Efficiency metrics vs. consumption metrics 373
 16.5.2 Energy-consumption metrics in cellular networks 374
16.6 Case study: energy efficiency of LTE 375
 16.6.1 Assessment methodology 375
 16.6.2 Small-scale short-term evaluations 376
 16.6.3 Large-scale long-term evaluations 377
16.7 LTE technology potential in real deployments 377
 16.7.1 Global radio access networks 378
 16.7.2 LTE system evaluation 380
 16.7.3 Evolution of LTE energy-efficiency over time 380
16.8 Fundamental challenges and future potential 381
16.9 Conclusion 382
17 Standardization, fora, and joint industrial projects on green radio networks 385
Alberto Conte, Hakon Helmers, and Philippe Sehier

17.1 Introduction 385
17.2 Standardization fora 386
 17.2.1 ETSI 387
 17.2.2 3GPP 389
 17.2.3 TIA and 3GPP2 394
 17.2.4 ATIS 395
 17.2.5 IETF/EMAN 395
 17.2.6 CCSA 396
17.3 Consortium and joint projects 396
 17.3.1 NGMN alliance 396
 17.3.2 FP7 EARTH project 398
 17.3.3 GreenTouch initiative 400
17.4 Synthesis and classification of energy-saving solutions for wireless networks 403
 17.4.1 Technology and component level 403
 17.4.2 Base station adaptation to traffic load 404
 17.4.3 Network architecture 405
 17.4.4 Heterogeneous networks 405
 17.4.5 Air interface 406
 17.4.6 Dynamic NW adaptation to traffic load 407
17.5 Conclusion 407

Index 409