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1 Introduction and Foundations

In this chapter, the basic concepts of robust estimation in a signal processing frame-

work are introduced. After a brief historical recount, we discuss outlier and heavy-

tailed distribution models. These models are common in engineering practice as is

evident from numerous measurements made in different fields, for example, in digital

communication. Among other heavy-tailed noise models, we introduce in this chapter

the epsilon mixture model that is used extensively in subsequent chapters. We then

consider the estimation of location and scale parameters in the real data case. The

principles underpinning this case are demonstrated by considering the simple problem of

estimating the direct current (DC) value when measurements are subject to random fluc-

tuations that are independently and identically distributed (i.i.d.) from sample to sample.

In this problem, the M-estimator is introduced and this highlights the intuitive link

to maximum likelihood estimation for different noise models. Important measures of

robustness then follow and these include the influence function (IF) and the breakdown

point (BP). The introduction of robustness in estimation comes at the price of decreased

statistical efficiency of the estimator and the trade-off between robustness and efficiency

is discussed. This trade-off is demonstrated by considering location estimation based on

the sample median. An understanding of this trade-off is likely to facilitate the signal

processing practitioner to design robust estimators for location and scale. Because this

chapter is intended to serve as an easy-to-read introduction to robustness concepts, only

the real-valued case is discussed. The complex-valued case is treated in Chapter 2, where

the linear regression model is introduced, which contains as a special case the location

(or location-scale) model.

Several examples, along with the associated MATLAB© code that allows users to

reproduce the results, are included in the downloadable RobustSP toolbox.

1.1 History of Robust Statistics

Statistical signal processing is an important area of research that has been successfully

applied to generations of engineering problems where the extraction of useful informa-

tion from empirical data is required. An effective way to incorporate knowledge from

empirical data is to use parametric stochastic models. Important foundations were estab-

lished in the 1920s by R. A. Fisher (Fisher, 1925) who derived many useful statistical

models and methods. When applying parametric methods to real-world problems, the

1

www.cambridge.org/9781107017412
www.cambridge.org


Cambridge University Press
978-1-107-01741-2 — Robust Statistics for Signal Processing
Abdelhak M. Zoubir , Visa Koivunen , Esa Ollila , Michael Muma 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction and Foundations

situation often arises that the observations do not exactly follow the assumptions made to

model the problem. In these cases, the nominally excellent performance can drastically

degrade.

From a practitioner’s viewpoint, however, it is essential that the results associated

with the parametric method used be acceptable in situations where the distributional

assumptions underpinning the assumed model do not hold. One approach is to make as

few assumptions as possible about the data and resort to a nonparametric statistical

model. In some signal processing applications, for example in spectrum estimation,

nonparametric approaches, based on the periodogram, have become widely popular.

However, in today’s engineering practice, parametric models continue to play an impor-

tant role. This is especially the case in complex applications, where, to retrieve mean-

ingful information, it is necessary to incorporate some knowledge about the system

under consideration. So which strategy should one follow? Everyone who deals with

real-world problems can relate to the famous remark by G. E. P. Box on robustness in

statistical model building, “All models are wrong, but some are useful” (Box, 1979). If

we acknowledge that the data model we use is at best a close approximation to the true

model from which real measurements have been obtained, it is then only a small step to

robust statistics.

Robustness, as treated in this book, deals with deviations from the distributional

assumptions, and we mainly consider deviations from a Gaussian (normal) probability

model. The word robust was introduced into the statistics literature by G. E. P. Box

in 1953 (Box, 1953). The study of robustness, however, predates even this pioneering

work. According to D. Bernoulli (Bernoulli, 1777), outlier rejection was already com-

mon practice in 1777. Mixture models and estimators that down-weight outliers were

known in the 1800s and S. Newcomb even “preinvented” a kind of one-step Huber-

estimator (Stigler, 1973). The question of how best to characterize uncertainties in

observations has been an ongoing discussion since the early days of statistics. The first

scientist to note in print that measurement errors deserve a systematic and scientific

treatment was G. Galileo in 1632 (Galilei, 1632).

Since its discovery in 1733 by A. de Moivre (de Moivre, 1733), the normal distribu-

tion has played a central role in statistical modeling. It was named after C. F. Gauss,

who derived it to justify his use of the least squares criterion in astronomy to locate an

orbit that best fitted known observations (Gauss, 1809). He developed a theory of errors

that is based on the following assumptions: (i) small errors are more likely than large

errors; (ii) the likelihood of the errors being positive or negative is equal; and (iii) in

the presence of several measurements of the same quantity, the most likely value of the

quantity being measured is their average. On this basis, Gauss derived the formula for

the normal probability density of the errors (Stahl, 2006), and this formula has since

been justified in many different ways and shown to be applicable in many different

contexts such that it is the default model that is used is many applications.

As H. Poincaré pointed out in 1904 (Poincaré, 1904), “Physicists believe that the

Gaussian law has been proved in mathematics while mathematicians think that it was

experimentally established in physics.” Even today, many methods encountered in engi-

neering practice rely on the Gaussian distribution of the data, which in many situations
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1.1 History of Robust Statistics 3

is well justified and motivated (Kim and Shevlyakov, 2008) by the central limit the-

orem. Assuming Gaussianity can be practical in many situations, for example, using

the Gaussian error model can be based on the argument that it minimizes the Fisher

information over the class of distributions with a bounded variance, and the Fourier

transform of a Gaussian function is another Gaussian function. Assuming Gaussianity

also enables a simple derivation of likelihood functions. In summary, the main justi-

fication for assuming a normal distribution is twofold. On the one hand, it provides

an approximate representation for many real-world data sets. On the other hand, it

is convenient from a theoretical viewpoint as it facilitates the derivation of closed-

form expressions for optimal detectors or estimators. Optimality is clearly a desirable

property for a detector or an estimator. Optimality, only under the assumed (nominal)

distribution, however, is useless if the estimator is applied to data that does not follow

this distribution. As highlighted by Tukey in 1960, even slight deviations from the

assumed distribution may cause the estimator’s performance to drastically degrade or

to completely break down (Zoubir et al., 2012).

Robust statistics formalizes the theory of approximate parametric models. On the

one hand, robust methods are able to leverage a parametric model, but on the other

hand, such methods do not depend critically on the exact fulfillment of the model

assumptions. In this sense, robust statistics are consistent with engineering intuition

and signal processing demands. Robust methods are designed in such a way that they

behave nearly optimally, if the assumed model is correct, while small deviations from

the model assumptions degrade performance only slightly and larger deviations do not

cause a catastrophe (Huber and Ronchetti, 2009). The theory of robust statistics was

established in the middle of the twentieth century by the pioneering work of J. P. Tukey,

P. J. Huber, and F. R. Hampel, who are often called the “founding fathers” of robust

statistics. In 1960, J. W. Tukey (Tukey, 1960) summarized his work in the 1940s and

1950s on the effect of a small amount of contaminating data (outliers) on the sample

mean and standard deviation. He introduced a contamination model and proposed some

estimators that are robust against such contamination.

The first attempt toward a unified framework for robust statistics was undertaken in

the seminal paper of P. J. Huber on robust location estimation in 1964 (Huber, 1964).

After defining neighborhoods around a true distribution that generates the data, he

proposed an estimator that yields minimax optimal performance over the entire neigh-

borhood. This means that the estimator is optimal for the worst-case distribution within

the neighborhood. For details on Huber’s approach, the reader is referred to the book by

P. J. Huber and E. M. Ronchetti (Huber and Ronchetti, 2009).

Further fundamental concepts of robust statistics were introduced by F. R. Hampel

in 1968 (Hampel, 1968). His so-called infinitesimal approach is based on three central

concepts: qualitative robustness, the IF and the BP. Intuitively, they correspond to the

continuity and first derivative of a function and the distance to its nearest singularity.

Interested readers are referred to the book by F. R. Hampel, E. M. Ronchetti, P. J.

Rousseeuw, and W. A. Stahel (Hampel et al., 2011).

In engineering, robust estimators and detectors have been of interest since the early

days of digital signal processing; see the review paper on robust methods published
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4 Introduction and Foundations

by Kassam and Poor in 1985 (Kassam and Poor, 1985) and references therein. Since

then, many aspects of robustness have been utilized in signal processing associated with

communications systems, radar and sonar, pattern recognition, biomedicine, speech, and

image processing, amongst others. The increasing complexity of the data (and models)

that are analyzed today have triggered new areas of research in robust statistics. Today,

for example, robust methods have to deal with high-dimensional, sparse, multivariate,

and/or complex-valued data. Nevertheless, much of today’s work is based on the ideas

that were formalized in the middle of the last century.

In many areas of engineering today, the distribution of the measurement data is far

from Gaussian as it contains outliers, which cause the distribution to be heavy-tailed.

In particular, measurement data from a diversity of areas (Blankenship et al., 1997;

Abramovich and Turcaj, 1999; Middleton, 1999; Etter, 2003) have confirmed the pres-

ence of impulsive (heavy-tailed) noise, which can cause optimal signal processing tech-

niques, especially the ones derived under the Gaussian probability model, to be biased

or to even break down.

The occurrence of impulsive noise has been reported, for example, in outdoor mobile

communication channels due to switching transients in power lines or automobile igni-

tion (Middleton, 1999), in radar and sonar systems as a result of natural or man-made

electromagnetic and acoustic interference (Abramovich and Turcaj, 1999; Etter, 2003),

and in indoor wireless communication channels, owing, for example, to microwave

ovens and devices with electromechanical switches, such as electric motors in elevators,

printers, and copying machines (Blankenship et al., 1997). Moreover, biomedical sensor

array measurements of brain activity, such as in magnetic resonance imaging (MRI) and

associated with regions of the human brain where complex tissue structures are known to

exist, have been found to be subject to non-Gaussian noise and interference (Alexander

et al., 2002).

In geolocation position estimation and tracking, non-line-of-sight (NLOS) signal

propagation, caused by obstacles such as buildings or trees, results in outliers in

measurements, to which conventional position estimation methods are very sensitive

(Hammes et al., 2009). In classical short-term load forecasting, the prediction accuracy

is adversely influenced by outliers, which are caused by nonworking days or excep-

tional events such as strikes, soccer’s World Cup, or natural disasters (Chakhchoukh

et al., 2010). Moreover, on a computer platform, various components, such as the

liquid crystal display (LCD) pixel clock and the peripheral component interconnect

(PCI) express bus, cause impulsive interference that degrades the performance of the

embedded wireless devices (Nassar et al., 2008). These studies show that in real-world

applications, robustness against departures from Gaussianity is important. It is therefore

not surprising that robustness is becoming an important area of engineering practice,

and more emphasis has been given in recent years to the design and development of

robust systems. The complexity of new engineering systems and the high robustness

requirements in many applications suggest the urgent need to further revisit robust

estimation techniques and present them in an accessible manner.
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1.2 Robust M-estimators for Single-Channel Data

In this section, robust M-estimators for single-channel data are introduced. M-estimation

is easily accessible in the single-channel context; in later chapters, we will show how this

concept can be applied to other areas such as multichannel data and linear regression.

1.2.1 Location and Scale Estimation

The robust estimation of the location and scale parameters of a univariate random vari-

able is considered to be the origin of what we know today as robust statistics. In the

1940s and 1950s, J. W. Tukey, one of the pioneers of statistics of the twentieth century,

investigated the effect of small amounts of contaminating data (outliers) on the sample

mean and standard deviation. Tukey also proposed robust estimators that are not severely

affected by outliers (Tukey, 1960). In 1964, P. J. Huber formalized robust statistical

theory and introduced M-estimation in his seminal paper on robust location estimation

(Huber, 1964).

Consider the Thevenin equivalent model of a DC electrical system, as illustrated in

Figure 1.1, with a Thevenin equivalent voltage of µ and a Thevenin equivalent resis-

tance of R Ohm. Thermal noise in the resistance leads to a time-varying noise signal,

denoted v(t), in series with the DC voltage source. The voltage at the system output is

denoted y(t).

The noise signal arising from a resistor has a uniform power spectral density over a

band that usually well exceeds the bandwidth of a measurement system, and time sam-

ples from such a signal are consistent with samples from a Gaussian probability density

function (pdf). From a random process perspective, the noise arising from a resistor has a

white power spectral density and a Gaussian amplitude pdf, that is, the noise is additive

white Gaussian noise (AWGN). Consistent with this, and in an electrical context, the

measurement of a DC level is modeled according to

yi = µ + vi, i = 1, . . . , N, (1.1)

+

–

+

v (t)
R

y (t)
µ

Figure 1.1 Thevenin equivalent model for a DC electrical system.
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6 Introduction and Foundations

where yi are random variables
1

that model measurements taken at time instances

ti, i ∈ {1, . . . , N} and vi are identically and independently distributed (i.i.d.) variables

for i = 1, . . . , N. Because the DC voltage is constant over time, it is represented by the

deterministic scalar quantity µ. A common assumption is that the random variable vi

follows the zero-mean Gaussian distribution, whose pdf is given by

f
(

vi

∣

∣

∣
µv, σ 2

v

)

= 1
√

2πσ 2
v

e
− (vi−µv)2

2σ2
v , (1.2)

with µv = 0. Under these assumptions, the pdf of the measurements is

f
(

yi

∣

∣

∣
µ, σ 2

)

= 1√
2πσ 2

e
− (yi−µ)2

2σ2 , (1.3)

where σ 2 = σ 2
v .

For many of today’s engineering applications, however, the AWGN model is not an

adequate representation. When considering the measurement of a DC voltage, impulsive

non-Gaussian noise can be injected, for example, by DC–DC converters, switching

mode power supplies found in light dimmers, or switching thermostats in fridges or

cookers.

Maximum Likelihood Estimation of Location and Scale

The goals of location and scale estimation are to determine the values µ and σ , which

best model the observations/measurements y = (y1, . . . , yN)⊤ from (1.1). Provided that

the Gaussian noise assumption is fulfilled, that is, that the pdf of vi is given by (1.2), the

maximum likelihood estimators (MLEs) are the sample mean and the sample standard

deviation.

Assuming statistical independence of yi, i = 1, . . . , N, this directly follows from

(1.1) and (1.3) by taking the partial derivatives of the Gaussian negative log-likelihood

function

LML(µ, σ |y) = N

2
ln(2πσ 2) +

∑N
i=1(yi − µ)2

2σ 2
(1.4)

with respect to the unknown parameters µ, σ

∂

∂µ
LML(µ, σ |y) = −2

∑N
i=1(yi − µ)

2σ 2

∂

∂σ
LML(µ, σ |y) = N

σ
−

∑N
i=1(yi − µ)2

σ 3

and setting them equal to zero. Thus, the sample mean is such that

N
∑

i=1

(yi − µ̂) = 0

1
Throughout the book, we will not explicitly differentiate between a random variable X and its realization x.

This should be understood from the context.
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and the sample standard deviation is such that

N −
∑N

i=1(yi − µ̂)2

σ̂ 2
= 0

⇔ 1

N

∑N
i=1(yi − µ̂)2

σ̂ 2
= 1.

Solving yields the well-known estimators of location

µ̂ = 1

N

N
∑

i=1

yi (1.5)

and scale

σ̂ =

√

√

√

√

1

N

N
∑

i=1

(yi − µ̂)2. (1.6)

Because the objective function that is defined in (1.4) is a jointly convex function in

(µ, 1/σ 2), a global minimizer can be found. Provided that the Gaussian assumption is

fulfilled, the sample mean and sample standard deviation that are defined, respectively,

in (1.5) and (1.6) are optimal in the sense that they attain the Cramér–Rao lower bound

(CRLB). This means that the distributions of
√

N(µ̂ − µ) and
√

N(σ̂ − σ) for N → ∞
tend to Gaussian distributions whose mean values are the true values (consistency) and

whose covariance is equal to the inverse of the Fisher information matrix (efficiency).

For the Gaussian distribution, and consistent with (1.5) and (1.6), it is optimal to give

all observations equal importance in the objective function. However, if the noise pdf

f
(

vi

∣

∣µv, σ 2
v

)

is that of a non-Gaussian random variable, and the measured data contains

outliers, our intuition dictates that we weight the observations yi, i = 1, . . . , N, in a

manner to give more importance to observations that are close to the measurement

model as compared to the ones that are unlikely to occur. This is precisely what robust

location and scale estimation is about.

A frequently used approach to derive robust estimators is to compute the MLE for

a heavy-tailed noise model, for example, the Laplace or the Cauchy noise distribution

(see Figure 1.2). The Laplace distribution has the pdf

0
–5 –4 –3 –2 –1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

Laplace
Cauchy

Gaussian

Figure 1.2 The Gaussian, Laplace, and Cauchy pdfs.
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8 Introduction and Foundations

Table 1.1 The probability that a random variable takes on a value that is more than

a few σ away from µ.

Gaussian Laplace Cauchy

Prob(|y − µ| > 3σ) 0.0027 0.0498 0.2048

Prob(|y − µ| > 4σ) 6.3342 · 10−5 0.0183 0.1560

Prob(|y − µ| > 5σ) 5.7330 · 10−7 0.0067 0.1257

Prob(|y − µ| > 10σ) 0 4.5400 · 10−5 0.0635

f (vi|µv, σv) = 1√
2σv

e
−

√
2|vi−µv|

σv , (1.7)

where µv and σv are the location and scale parameters, respectively. The Cauchy distri-

bution has the pdf

f (vi|µv, σv) = 1

πσv

· σ 2
v

(vi − µv)2 + σ 2
v

. (1.8)

As shown in Table 1.1, the probability that a Laplace, or Cauchy, distributed random

variable takes on a value that is more than three standard deviations away from µ is

significantly different from zero. For the Cauchy-distributed random variable, even the

probability of taking on a value that is more than ten σ away from µ is 0.0635.

If the model for the noise is the Laplace distribution, that is, (1.7) holds with µv = 0,

the pdf of yi becomes

f (yi|µ, σ) = 1√
2σ

e−
√

2|yi−µ|
σ ,

where σ = σv. For N observations, the negative log-likelihood function is then given by

LML(µ, σ |y) = N ln(
√

2σ) +
√

2

σ

N
∑

i=1

|yi − µ| . (1.9)

Taking the partial derivative with respect to µ yields

∂

∂µ
LML(µ, σ |y) =

√
2

σ

N
∑

i=1

∂ |yi − µ|
∂µ

= −
√

2

σ

N
∑

i=1

sign(yi − µ) (1.10)

where the identity

∂|x|
∂x

= x

|x| = sign(x).
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has been used and the sign function is defined as

sign(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+1, if x > 0,

0, if x = 0,

−1, if x < 0.

(1.11)

The MLE of the location parameter µ, is the solution of

√
2

σ

N
∑

i=1

sign(yi − µ) = 0

and the sample median, that is,

med(y) =

⎧

⎨

⎩

y(

N+1
2

), if N is odd,

1
2
(y(

N
2

) + y(

N
2 +1

)), if N is even,
(1.12)

given ordered samples {y(1) ≤ . . . ≤ y(N−1) ≤ y(N)}. From

∂

∂σ
LML(µ, σ |y) = 0

the MLE of the scale parameter turns out to be the mean of the absolute deviations from

the median, that is,

σ̂ = 1

N

N
∑

i=1

|yi − med(y)|. (1.13)

Weighted medians are addressed in Section 2.4.1 in the context of linear regression.

Median and weighted median filters are discussed in Section 7.2.

The negative log-likelihood function for the Cauchy distribution given a sample

size N is

LML(µ, σ |y) = N ln(σπ) +
N

∑

i=1

ln

(

1 +
(

yi − µ

σ

)2
)

. (1.14)

Taking the partial derivatives of (1.14) with respect to the unknown parameters µ and

σ yields

∂

∂µ
LML(µ, σ |y) = −2σ

N
∑

i=1

yi − µ

σ 2 + (yi − µ)2
(1.15)

and

∂

∂σ
LML(µ, σ |y) = N

σ
− 2

σ

N
∑

i=1

1

σ 2 + (yi − µ)2
. (1.16)
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To find the Cauchy location and scale estimates, a numerical solution to

N
∑

i=1

yi − µ

σ 2 + (yi − µ)2
= 0

N
∑

i=1

1

σ 2 + (yi − µ)2
= N

2

is required. Kalluri and Arce (2000), for example, provide an algorithm that employs a

fixed-point (FP) search that is guaranteed to converge to a local minimum. However,

one needs to be careful with the choice of the local minimum because the Cauchy

likelihood can have multiple spurious roots (Reeds, 1985). Finding a global optimum

for the location and scale of non-Gaussian ML functions is still an open problem.

M-estimation of Location and Scale

An important class of robust estimators are M-estimators (Huber and Ronchetti, 2009),

which are a generalization of MLEs. Because this chapter is intended to serve as an

easy-to-read introduction to robustness concepts, only the real-valued case is discussed.

M-estimation of location and scale is extended to the complex-valued case in Section

2.5 of the next chapter, where linear regression is discussed.
2

M-estimators replace the negative log-likelihood function LML(µ, σ |y) with a different

objective function LM(µ, σ |y) = ρ(µ, σ |y). If ρ(·) is differentiable, with

ψ(x) = dρ(x)

dx
, (1.17)

then the M-estimating equations follow:

N
∑

i=1

ψ

(

yi − µ̂

σ̂

)

= 0 (1.18)

and

1

N

N
∑

i=1

ψ

(

yi − µ̂

σ̂

)

·
(

yi − µ̂

σ̂

)

= b. (1.19)

Here, b is a positive constant that must satisfy 0 < b < ρ(∞). If f (yi|µ, σ) is symmetric,

then ρ(µ, σ |y) is even and, hence, ψ(µ, σ |y) is odd. MLEs are included within the class

of M-estimators by setting ρ(µ, σ |y) = LML(µ, σ |y). For example, in the Gaussian noise

case, the MLE is obtained by letting ψ(x) = x and b = 1 in (1.18) and (1.19).

M-estimators are classified into two categories depending on the shape of ψ(x),

namely the monotone and the redescending M-estimators. Within the redescending

class, the M-estimators for which ψ(x) returns exactly to zero, that is, ψ(x0) = 0 for

some value x0, are called strongly redescending. For a detailed discussion of different ψ

functions, the interested reader is referred, for example, to Huber and Ronchetti (2009,

chapter 4).

2
The linear regression model contains as a special case the location (or location-scale) model when the

design matrix is a column vector of ones.
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