Contents

Preface xi

Acknowledgments xvii

Symbols and Acronyms xix

I Basics of Optimization 1

1 Main Concepts 3
 1.1 Optimization Problems 3
 1.2 Convexity ... 6
 1.3 Optimality Conditions 9
 1.4 Lagrange Duality Theory 10
 1.5 Complementary Slackness 13
 1.6 Karush-Kuhn-Tucker Conditions 14

2 Linear and Quadratic Optimization 19
 2.1 Polyhedra and Polytopes 19
 2.2 Linear Programming 20
 2.3 Quadratic Programming 27
 2.4 Mixed-Integer Optimization 30

3 Numerical Methods for Optimization 33
 3.1 Convergence ... 33
 3.2 Unconstrained Optimization 35
 3.3 Constrained Optimization 47

4 Polyhedra and P-Collections 71
 4.1 General Set Definitions and Operations 71
 4.2 Polyhedra and Representations 73
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Polytopal Complexes</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Basic Operations on Polytopes</td>
<td>78</td>
</tr>
<tr>
<td>4.5</td>
<td>Operations on P-Collections</td>
<td>88</td>
</tr>
<tr>
<td>II</td>
<td>Multiparametric Programming</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>Multiparametric Nonlinear Programming</td>
<td>95</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction to Multiparametric Programs</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>General Results for Multiparametric Nonlinear Programs</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>Multiparametric Programming: A Geometric Approach</td>
<td>107</td>
</tr>
<tr>
<td>6.1</td>
<td>Multiparametric Programs with Linear Constraints</td>
<td>107</td>
</tr>
<tr>
<td>6.2</td>
<td>Multiparametric Linear Programming</td>
<td>110</td>
</tr>
<tr>
<td>6.3</td>
<td>Multiparametric Quadratic Programming</td>
<td>125</td>
</tr>
<tr>
<td>6.4</td>
<td>Multiparametric Mixed-Integer Linear Programming</td>
<td>136</td>
</tr>
<tr>
<td>6.5</td>
<td>Multiparametric Mixed-Integer Quadratic Programming</td>
<td>140</td>
</tr>
<tr>
<td>6.6</td>
<td>Literature Review</td>
<td>142</td>
</tr>
<tr>
<td>III</td>
<td>Optimal Control</td>
<td>145</td>
</tr>
<tr>
<td>7</td>
<td>General Formulation and Discussion</td>
<td>147</td>
</tr>
<tr>
<td>7.1</td>
<td>Problem Formulation</td>
<td>147</td>
</tr>
<tr>
<td>7.2</td>
<td>Solution via Batch Approach</td>
<td>149</td>
</tr>
<tr>
<td>7.3</td>
<td>Solution via Recursive Approach</td>
<td>150</td>
</tr>
<tr>
<td>7.4</td>
<td>Optimal Control Problem with Infinite Horizon</td>
<td>152</td>
</tr>
<tr>
<td>7.5</td>
<td>Lyapunov Stability</td>
<td>156</td>
</tr>
<tr>
<td>8</td>
<td>Linear Quadratic Optimal Control</td>
<td>163</td>
</tr>
<tr>
<td>8.1</td>
<td>Problem Formulation</td>
<td>163</td>
</tr>
<tr>
<td>8.2</td>
<td>Solution via Batch Approach</td>
<td>164</td>
</tr>
<tr>
<td>8.3</td>
<td>Solution via Recursive Approach</td>
<td>165</td>
</tr>
<tr>
<td>8.4</td>
<td>Comparison of the Two Approaches</td>
<td>166</td>
</tr>
<tr>
<td>8.5</td>
<td>Infinite Horizon Problem</td>
<td>168</td>
</tr>
<tr>
<td>9</td>
<td>Linear $1/\infty$ Norm Optimal Control</td>
<td>171</td>
</tr>
<tr>
<td>9.1</td>
<td>Problem Formulation</td>
<td>171</td>
</tr>
<tr>
<td>9.2</td>
<td>Solution via Batch Approach</td>
<td>172</td>
</tr>
<tr>
<td>9.3</td>
<td>Solution via Recursive Approach</td>
<td>175</td>
</tr>
<tr>
<td>9.4</td>
<td>Comparison of the two Approaches</td>
<td>177</td>
</tr>
<tr>
<td>9.5</td>
<td>Infinite Horizon Problem</td>
<td>178</td>
</tr>
</tbody>
</table>
IV Constrained Optimal Control of Linear Systems

10 Controllability, Reachability and Invariance

- 10.1 Controllable and Reachable Sets 183
- 10.2 Invariant Sets .. 190
- 10.3 Robust Controllable and Reachable Sets 195
- 10.4 Robust Invariant Sets .. 204

11 Constrained Optimal Control

- 11.1 Problem Formulation .. 211
- 11.2 Feasible Solutions .. 213
- 11.3 2-Norm Case Solution ... 218
- 11.4 1-Norm and ∞-Norm Case Solution 229
- 11.5 State Feedback Solution, Minimum-Time Control 239
- 11.6 Comparison of the Design Approaches and Controllers 241

12 Receding Horizon Control

- 12.1 RHC Idea ... 243
- 12.2 RHC Implementation .. 244
- 12.3 RHC Main Issues .. 251
- 12.4 State Feedback Solution of RHC, 2-Norm Case 257
- 12.5 State Feedback Solution of RHC, 1-Norm, ∞-Norm Case 260
- 12.6 Tuning and Practical Use ... 262
- 12.7 Offset-Free Reference Tracking 266
- 12.8 Literature Review .. 274

13 Approximate Receding Horizon Control

- 13.1 Stability of Approximate Receding Horizon Control 278
- 13.2 Barycentric Interpolation .. 280
- 13.3 Partitioning and Interpolation Methods 285

14 On-Line Control Computation

- 14.1 Storage and On-Line Evaluation of the PWA Control Law 301
- 14.2 Gradient Projection Methods Applied to MPC 312
- 14.3 Interior Point Method Applied to MPC 315

15 Constrained Robust Optimal Control

- 15.1 Problem Formulation .. 317
- 15.2 Feasible Solutions .. 324
- 15.3 State Feedback Solution, Nominal Cost 330
- 15.4 State Feedback Solution, Worst-Case Cost, 1-Norm and ∞-Norm Case .. 331
- 15.5 Parametrizations of the Control Policies 336
Table of Contents

V Constrained Optimal Control of Hybrid Systems
347

16 Models of Hybrid Systems
349
- 16.1 Models of Hybrid Systems
- 16.2 Piecewise Affine Systems
- 16.3 Discrete Hybrid Automata
- 16.4 Logic and Mixed-Integer Inequalities
- 16.5 Mixed Logical Dynamical Systems
- 16.6 Model Equivalence
- 16.7 The HYSDEL Modeling Language
- 16.8 Literature Review

17 Optimal Control of Hybrid Systems
375
- 17.1 Problem Formulation
- 17.2 Properties of the State Feedback Solution, 2-Norm Case
- 17.3 Properties of the State Feedback Solution, 1-Norm, ∞-Norm Case
- 17.4 Computation of the Optimal Control Input via Mixed Integer Programming
- 17.5 State Feedback Solution via Batch Approach
- 17.6 State Feedback Solution via Recursive Approach
- 17.7 Discontinuous PWA Systems
- 17.8 Receding Horizon Control

References
405

Index
421