Contents

Preface page xv
Acknowledgments xx

Part I Basic Energy Physics and Uses

1 Introduction 1
 1.1 Units and Energy Quantities 3
 1.2 Types of Energy 5
 1.3 Scales of Energy 9
 Discussion/Investigation Questions 9
 Problems 10

2 Mechanical Energy 11
 2.1 Kinetic Energy 12
 2.2 Potential Energy 13
 2.3 Air Resistance and Friction 19
 2.4 Rotational Mechanics 22
 Discussion/Investigation Questions 24
 Problems 24

3 Electromagnetic Energy 27
 3.1 Electrostatics, Capacitance, and Energy Storage 29
 3.2 Currents, Resistance, and Resistive Energy Loss 35
 3.3 Magnetism 41
 3.4 Electric Motors and Generators 45
 3.5 Induction and Inductors 48
 3.6 Maxwell’s Equations 52
 Discussion/Investigation Questions 53
 Problems 53

4 Waves and Light 56
 4.1 Waves and a Wave Equation 56
 4.2 Waves on a String 58
 4.3 Electromagnetic Waves 61
 4.4 Energy and Momentum in Electric and Magnetic Fields 62
 4.5 General Features of Waves and Wave Equations 63
 Discussion/Investigation Questions 67
 Problems 67

5 Thermodynamics I: Heat and Thermal Energy 69
 5.1 What is Heat? 70
 5.2 Pressure and Work 74
 5.3 First Law of Thermodynamics 77
 5.4 Heat Capacity 78
 5.5 Enthalpy 81
Contents

5.6 Phase Transitions 82
Discussion/Investigation Questions 85
Problems 86

6 Heat Transfer 88
6.1 Mechanisms of Heat Transfer 88
6.2 Heat Conduction 89
6.3 Heat Transfer by Convection and Radiation 96
6.4 Preventing Heat Loss from Buildings 100
6.5 The Heat Equation 102
Discussion/Investigation Questions 106
Problems 106

7 Introduction to Quantum Physics 109
7.1 Motivation: The Double Slit Experiment 110
7.2 Quantum Wavefunctions and the Schrödinger Wave Equation 114
7.3 Energy and Quantum States 118
7.4 Quantum Superposition 120
7.5 Quantum Measurement 122
7.6 Time Dependence 126
7.7 Quantum Mechanics of Free Particles 127
7.8 Particles in Potentials 129
Discussion/Investigation Questions 133
Problems 134

8 Thermodynamics II: Entropy and Temperature 136
8.1 Introduction to Entropy and the Second Law 136
8.2 Information Entropy 138
8.3 Thermodynamic Entropy 141
8.4 Thermal Equilibrium and Temperature 142
8.5 Limit to Efficiency 148
8.6 The Boltzmann Distribution 150
8.7 The Partition Function and Simple Thermodynamic Systems 153
8.8 Spontaneous Processes and Free Energy 158
Discussion/Investigation Questions 160
Problems 160

9 Energy in Matter 162
9.1 Energy, Temperature, and the Spectrum of Electromagnetic Radiation 163
9.2 A Tour of the Internal Energy of Matter I: From Ice to Vapor 164
9.3 A Tour of the Internal Energy of Matter II: Molecular Vibrations, Dissociation, and Binding Energies 167
9.5 Chemical Thermodynamics: Examples 177
Discussion/Investigation Questions 180
Problems 180

10 Thermal Energy Conversion 183
10.1 Thermodynamic Variables, Idealizations, and Representations 185
10.2 Thermodynamic Processes in Gas Phase Engines 187
10.3 Carnot Engine 191
10.4 Stirling Engine 193
10.5 Limitations to Efficiency of Real Engines 198
10.6 Heat Extraction Devices: Refrigerators and Heat Pumps 198
Discussion/Investigation Questions 201
Problems 201
Contents

11 Internal Combustion Engines

11.1 Spark Ignition Engines and the Otto Cycle 204
11.2 Combustion and Fuels 208
11.3 Real Spark Ignition Engines 212
11.4 Other Internal Combustion Cycles 213
Discussion/Investigation Questions 217
Problems 217

12 Phase-change Energy Conversion

12.1 Advantages of Phase Change in Energy Conversion Cycles 219
12.2 Phase Change in Pure Substances 223
12.3 The Real World: Engineering Nomenclature and Practical Calculations 230
Discussion/Investigation Questions 233
Problems 234

13 Thermal Power and Heat Extraction Cycles

13.1 Thermodynamics with Flowing Fluids 236
13.2 Heat Extraction and the Vapor-compression Cycle 238
13.3 The Rankine Steam Cycle 246
13.4 Low-temperature Organic Rankine Systems 253
13.5 Gas Turbine and Combined Cycles 254
Discussion/Investigation Questions 258
Problems 259

Part II Energy Sources

14 The Forces of Nature

14.1 Forces, Energies, and Distance Scales 265
14.2 Elementary Particles 269
14.3 The Weak Interactions and β-decay 275
Discussion/Investigation Questions 278
Problems 278

15 Quantum Phenomena in Energy Systems

15.1 Decays and Other Time-dependent Quantum Processes 280
15.2 The Origins of Tunneling 280
15.3 Barrier Penetration 283
15.4 Tunneling Lifetimes 285
15.5 The Pauli Exclusion Principle 287
Discussion/Investigation Questions 289
Problems 289

16 An Overview of Nuclear Power

16.1 Overview 292
16.2 Nuclear Fission Fuel Resources 294
16.3 The Following Chapters 297
Discussion/Investigation Questions 297
Problems 298

17 Structure, Properties, and Decays of Nuclei

17.1 Basic Nuclear Properties 300
17.2 The Semi-empirical Mass Formula 303
17.3 Nuclear Binding Systematics 307
17.4 Nuclear Decays 312
Discussion/Investigation Questions 320
Problems 320
Contents

18 Nuclear Energy Processes: Fission and Fusion
- 18.1 Comparing Fission and Fusion: 323
- 18.2 Cross Sections: 324
- 18.3 Physics of Nuclear Fission: 325
- 18.4 Physics of Nuclear Fusion: 335
- Discussion/Investigation Questions: 339
- Problems: 340

19 Nuclear Fission Reactors and Nuclear Fusion Experiments
- 19.1 Nuclear Fission Reactor Dynamics: 343
- 19.2 Physics Issues Affecting Fission Reactor Operation and Safety: 352
- 19.3 Breeding and Fusion Reactors: 355
- 19.4 Fission Reactor Design: Past, Present, and Future: 357
- 19.5 Nuclear Reactor Power Cycles: 362
- 19.6 Experiments in Thermonuclear Fusion: 363
- Discussion/Investigation Questions: 370
- Problems: 370

20 Ionizing Radiation
- 20.1 Forms of Ionizing Radiation: An Overview: 373
- 20.2 Interactions of Radiation with Matter: 375
- 20.3 Measures of Radiation: 380
- 20.4 Biological Effects of Radiation: 384
- 20.5 Radiation in the Human Environment: 389
- 20.6 Nuclear Waste and Nuclear Proliferation: 395
- Discussion/Investigation Questions: 401
- Problems: 402

21 Energy in the Universe
- 21.1 What is Energy?: 404
- 21.2 A Brief History of Energy in the Universe: 415
- Discussion/Investigation Questions: 420
- Problems: 421

22 Solar Energy: Solar Production and Radiation
- 22.1 Nuclear Source of Solar Energy: 423
- 22.2 Blackbody Radiation and Solar Radiation: 425
- 22.3 Derivation of the Blackbody Radiation Formula: 428
- Discussion/Investigation Questions: 430
- Problems: 430

23 Solar Energy: Solar Radiation on Earth
- 23.1 Insolation and the Solar Constant: 432
- 23.2 Earth’s Orbit: 433
- 23.3 Variation of Insolation: 434
- 23.4 Interaction of Light with Matter: 437
- 23.5 Atmospheric Absorption: 440
- 23.6 Extent of Resource: 443
- Discussion/Investigation Questions: 444
- Problems: 444

24 Solar Thermal Energy
- 24.1 Solar Absorption and Radiation Balance: 446
- 24.2 Low-temperature Solar Collectors: 447
- 24.3 Concentrators: 451
- 24.4 Solar Thermal Electricity (STE): 453
- Discussion/Investigation Questions: 459
- Problems: 462
Contents

25 Photovoltaic Solar Cells
- 25.1 Introductory Aspects of Solid-state Physics 465
- 25.2 Quantum Mechanics on a Lattice 467
- 25.3 Electrons in Solids and Semiconductors 471
- 25.4 The PV Concept and a Limit on Collection Efficiency 473
- 25.5 Band Structure of Silicon 476
- 25.6 p-n Junctions 479
- 25.7 The p-n Junction as a Photodiode 482
- 25.8 Silicon Solar Cells 487
- 25.9 Advanced Solar Cells 488
- 25.10 Global Use of Photovoltaics 492

Discussion/Investigation Questions 492
Problems 492

26 Biological Energy
- 26.1 Energy and Photosynthesis 494
- 26.2 Food Energy 499
- 26.3 Biomass 502
- 26.4 Biofuels 504
- 26.5 The Future of Bioenergy 511

Discussion/Investigation Questions 512
Problems 512

27 Ocean Energy Flow
- 27.1 Oceanic Energy Balance and Transport 514
- 27.2 Coriolis Force 517
- 27.3 Surface Currents 519
- 27.4 Atmospheric Circulation 523
- 27.5 Ocean Circulation 525
- 27.6 Ocean Thermal Resources and Ocean Thermal Energy Conversion (OTEC) 527

Discussion/Investigation Questions 528
Problems 529

28 Wind: A Highly Variable Resource
- 28.1 The Nature of the Wind 531
- 28.2 Characterization of a Wind Resource 544
- 28.3 The Potential of Wind Energy 550

Discussion/Investigation Questions 554
Problems 554

29 Fluids: The Basics
- 29.1 Defining Characteristics of a Fluid 556
- 29.2 Simplifying Assumptions and Conservation Laws 559
- 29.3 Viscosity 564
- 29.4 Lift 567

Discussion/Investigation Questions 575
Problems 575

30 Wind Turbines
- 30.1 Axial-momentum Theory and Betz’s Limit 577
- 30.2 Turbine Blades and Power 582
- 30.3 Some Design Considerations 588

Discussion/Investigation Questions 590
Problems 590

31 Energy from Moving Water: Hydro, Wave, Tidal, and Marine Current Power
- 31.1 Hydropower 591
- 31.2 Wave Power 598
- 31.3 Tidal Power 609
Table of Contents

Part II Energy Sources

31 Marine Current Energy
- 31.4 Marine Current Energy 616
- Discussion/Investigation Questions 617
- Problems 617

32 Geothermal Energy
- 32.1 Thermal Energy in Earth’s Interior 620
- 32.2 Geothermal Energy Resources 621
- 32.3 Ground Source Heat Pumps 631
- 32.4 Hydrothermal Energy 633
- 32.5 Enhanced Geothermal Systems (EGS) 641
- 32.6 Magnitude of Geothermal Resources 642
- Discussion/Investigation Questions 643
- Problems 643

33 Fossil Fuels
- 33.1 Coal 645
- 33.2 Petroleum 647
- 33.3 Natural Gas 657
- 33.4 Hydrocarbon Conversion 669
- 33.5 Fossil Fuel Summary 673
- Discussion/Investigation Questions 677
- Problems 677

Part III Energy System Issues and Externalities

34 Energy and Climate
- 34.1 Albedo and the Greenhouse Effect 679
- 34.2 Atmospheric Physics 681
- 34.3 Global Energy Flow 682
- 34.4 CO₂ and the Carbon Cycle 685
- 34.5 Feedbacks and Climate Modeling 694
- Discussion/Investigation Questions 695
- Problems 695

35 Earth’s Climate: Past, Present, and Future
- 35.1 Past Climate 707
- 35.2 Predicting Future Climate 710
- 35.3 Effects of Climate Change 724
- 35.4 Mitigation and Adaptation 729
- Discussion/Investigation Questions 736
- Problems 739

36 Energy Efficiency, Conservation, and Changing Energy Sources
- 36.1 First Law Efficiency 741
- 36.2 Second Law Efficiency 742
- 36.3 Example: The Efficiency of Space Heating 746
- 36.4 Exergy 747
- 36.5 Efficiency and Conservation Case Studies 749
- 36.6 Energy Systems: Scales and Transformations 755
- Discussion/Investigation Questions 764
- Problems 771

37 Energy Storage
- 37.1 Performance Criteria for Energy Storage 772
- 37.2 Grid-scale Storage 775
- 37.3 Mobile Energy Storage 776
- 37.4 Other Energy Storage Systems 782
- Discussion/Investigation Questions 792
- Problems 797
Contents

38 Electricity Generation and Transmission
- 38.1 Overview of Electric Grids 800
- 38.2 LRC Circuits 801
- 38.3 Grid-scale Electricity Generation 803
- 38.4 Transmission and Distribution of Electric Power 814
- 38.5 Renewables: Variable and Distributed Energy Resources 823
 - Discussion/Investigation Questions 827
 - Problems 827

Appendix A Notation

Appendix B Some Basic Mathematics

Appendix C Units and Fundamental Constants

Appendix D Data

- References 846
- Index 857

© in this web service Cambridge University Press
www.cambridge.org