
PART ONE
GETTING STARTED

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01616-3 - Foundations of Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak
Excerpt
More information

http://www.cambridge.org/9781107016163
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01616-3 - Foundations of Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak
Excerpt
More information

http://www.cambridge.org/9781107016163
http://www.cambridge.org
http://www.cambridge.org

1
Data exchange by example

Data exchange is the problem of finding an instance of a target schema, given an instance
of a source schema and a specification of the relationship between the source and the target.
Such a target instance should correctly represent information from the source instance un-
der the constraints imposed by the target schema, and should allow one to evaluate queries
on the target instance in a way that is semantically consistent with the source data.

Data exchange is an old problem that re-emerged as an active research topic recently
due to the increased need for exchange of data in various formats, often in e-business
applications.

The general setting of data exchange is this:

query Qmapping M
source S target T

We have fixed source and target schemas, an instance S of the source schema, and a map-
ping M that specifies the relationship between the source and the target schemas. The goal
is to construct an instance T of the target schema, based on the source and the mapping,
and answer queries against the target data in a way consistent with the source data.

The goal of this introductory chapter is to make precise some of the key notions of
data exchange: schema mappings, solutions, source-to-target dependencies, and certain
answers. We do it by means of an example we present in the next section.

1.1 A data exchange example

Suppose we want to create a database containing three relations:

• ROUTES(flight#,source,destination)

This relation has information about routes served by several airlines: it has a flight#
attribute (e.g., AF406 or KLM1276), as well as source and destination attributes
(e.g., Paris and Santiago for AF406).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01616-3 - Foundations of Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak
Excerpt
More information

http://www.cambridge.org/9781107016163
http://www.cambridge.org
http://www.cambridge.org

4 Data exchange by example

dest airl city coun phone

SERVES

src dest airl dep

FLIGHT

dep airl

INFO FLIGHT

f# arr

coun

GEO

city pop

src

ROUTES

f#

Figure 1.1 Schema mapping: a simple graphical representation

• INFO FLIGHT(flight#,departure time,arrival time,airline)

This relation provides additional information about the flight: departure and arrival
times, as well as the name of an airline.

• SERVES(airline,city,country,phone)

This relation has information about cities served by airlines: for example, it may have
a tuple (AirFrance, Santiago, Chile, 5550000), indicating that Air France serves Santi-
ago, Chile, and its office there can be reached at 555-0000.

We do not start from scratch: there is a source database available from which we can
transfer information. This source database has two relations:

• FLIGHT(source,destination,airline,departure)

This relation contains information about flights, although not all the information
needed in the target. We only have source, destination, and airline (but no flight number),
and departure time (but no arrival time).

• GEO(city,country,population)

This relation has some basic geographical information: cities, countries where they
are located, and their population.

As the first step of moving the data from the source database into our target, we have to
specify a schema mapping, a set of relationships between the two schemas. We can start
with a simple graphical representation of such a mapping shown in Figure 1.1. The arrows
in such a graphical representation show the relationship between attributes in different
schemas.

But simple connections between attributes are not enough. For example, when we create
records in ROUTES and INFO FLIGHT based on a record in FLIGHT, we need to ensure that
the values of the flight# attribute (abbreviated as f# in the figure) are the same. This is
indicated by a curved line connecting these attributes. Likewise, when we populate table
SERVES, we only want to include cities which appear in table FLIGHT – this is indicated by
the line connecting attributes in tables GEO and FLIGHT.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01616-3 - Foundations of Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak
Excerpt
More information

http://www.cambridge.org/9781107016163
http://www.cambridge.org
http://www.cambridge.org

1.1 A data exchange example 5

(2)

airl city coun phone

SERVES

src dest airl dep

FLIGHT

dep airl

INFO FLIGHT

f# arr

coun

GEO

city pop

src

ROUTES

f# dest

(1) (1) (1)
(1)

(2) (2)

Figure 1.2 Schema mapping: a proper graphical representation

Furthermore, there are several rules in a mapping that help us populate the target
database. In this example, we can distinguish two rules. One uses table FLIGHT to pop-
ulate ROUTES and INFO FLIGHT, and the other uses both FLIGHT and GEO to populate
SERVES. So in addition we annotate arrows with names or numbers of rules that they are
used in. Such a revised representation is shown in Figure 1.2.

While it might be easy for someone understanding source and target schemas to produce
a graphical representation of the mapping, we need to translate it into a formal specifica-
tion. Let us look at the first rule which says:

whenever we have a tuple (src,dest,airl,dep) in relation FLIGHT, we must have a tuple in
ROUTES that has src and dest as the values of the second and the third attributes, and a tuple in
INFO FLIGHT that has dep and airl as the second and the fourth attributes.

Formally, this can be written as:

FLIGHT(src,dest,airl,dep)−→
ROUTES(,src,dest), INFO FLIGHT(,dep, ,airl).

This is not fully satisfactory: indeed, as we lose information that the flight numbers must be
the same; hence, we need to explicitly mention the names of all the variables, and produce
the following rule:

FLIGHT(src,dest,airl,dep)−→
ROUTES(f#,src,dest), INFO FLIGHT(f#,dep,arr,airl).

What is the meaning of such a rule? In particular, what are those variables that appear
in the target specification without being mentioned in the source part? What the mapping
says is that values for these variables must exist in the target, in other words, the following
must be satisfied:

FLIGHT(src,dest,airl,dep)−→
∃f# ∃arr

(
ROUTES(f#,src,dest)

∧ INFO FLIGHT(f#,dep,arr,airl)
)

.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01616-3 - Foundations of Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak
Excerpt
More information

http://www.cambridge.org/9781107016163
http://www.cambridge.org
http://www.cambridge.org

6 Data exchange by example

To complete the description of the rule, we need to clarify the role of variables src, dest,
airl and dep. The meaning of the rule is that for every tuple (src,dest,airl,dep) in
table FLIGHT we have to create tuples in relations ROUTES and INFO FLIGHT of the target
schema. Hence, finally, the meaning of the first rule is:

∀src ∀dest ∀airl ∀dep
(
FLIGHT(src,dest,airl,dep)−→

∃f# ∃arr
(

ROUTES(f#,src,dest)

∧ INFO FLIGHT(f#,dep,arr,airl)
))

.

Note that this is a query written in relational calculus, without free variables. In other
words, it is a sentence of first-order logic, over the vocabulary including both source and
target relations. The meaning of this sentence is as follows: given a source S, a target
instance we construct is such that together, S and T satisfy this sentence.

We now move to the second rule. Unlike the first, it looks at two tuples in the source:
(src,dest,airl,dep) in FLIGHT and (city,country,popul) in GEO. If they satisfy
the join condition city=scr, then a tuple needs to be inserted in the target relation SERVES:

FLIGHT(src,dest,airl,dep), GEO(city,country,popul), city=src
−→ SERVES(airl,city,country,phone).

As with the first rule, the actual meaning of this rule is obtained by explicitly quantifying
the variables involved:

∀city ∀dest ∀airl ∀dep ∀country ∀popul
(

FLIGHT(city,dest,airl,dep)∧ GEO(city,country,popul)−→
∃phone SERVES(airl,city,country,phone)

)
.

We can also have a similar rule in which the destination city is moved in the SERVES table
in the target:

∀city ∀dest ∀airl ∀dep ∀country ∀popul
(

FLIGHT(src,city,airl,dep)∧ GEO(city,country,popul)−→
∃phone SERVES(airl,city,country,phone)

)
.

These rules together form what we call a schema mapping: a collection of rules that
specify the relationship between the source and the target. When we write them, we ac-
tually often omit universal quantifiers ∀, as they can be reconstructed by the following
rule:

• every variable mentioned in one of the source relations is quantified universally.

With these conventions, we arrive at the schema mapping M , shown in Figure 1.3.
Now, what does it mean to have a target instance, given a source instance and a mapping?

Since mappings are logical sentences, we want target instances to satisfy these sentences,
with respect to the source. More precisely, note that mappings viewed as logical sentences

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01616-3 - Foundations of Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak
Excerpt
More information

http://www.cambridge.org/9781107016163
http://www.cambridge.org
http://www.cambridge.org

1.1 A data exchange example 7

(1) FLIGHT(src,dest,airl,dep) −→
∃f# ∃arr

(
ROUTES(f#,src,dest)

∧ INFO FLIGHT(f#,dep,arr,airl)
)

(2) FLIGHT(city,dest,airl,dep) ∧ GEO(city,country,popul)

−→ ∃phone SERVES(airl,city,country,phone)

(3) FLIGHT(src,city,airl,dep) ∧ GEO(city,country,popul)

−→ ∃phone SERVES(airl,city,country,phone)

Figure 1.3 A schema mapping

mention both source and target schemas. So possible target instances T for a given source
S must satisfy the following condition:

For each condition ϕ of the mapping M , the pair (S,T) satisfies ϕ .

We call such instances T solutions for S under M . Look, for example, at our mapping M ,
and assume that the source S has a tuple (Paris, Santiago, AirFrance, 2320) in FLIGHT.
Then every solution T for S under M must have tuples

(x, Paris, Santiago) in ROUTES and
(x, 2320, y, AirFrance) in INFO FLIGHT

for some values x and y, interpreted as flight number and arrival time. The mapping says
nothing about these values: they may be real values (constants), e.g., (406, Paris, Santiago),
or nulls, indicating that we lack this information at present. We shall normally use the
symbol ⊥ to denote nulls, so a common way to populate the target would be with tuples
(⊥, Paris, Santiago) and (⊥, 2320,⊥′, AirFrance). Note that the first attributes of both tu-
ples, while being unknown, are nonetheless the same. This situation is referred to as having
marked nulls, or naı̈ve nulls, as they are used in naı̈ve tables, studied extensively in con-
nection with incomplete information in relational databases. At the same time, we know
nothing about the other null ⊥′ used: nothing prevents it from being different from ⊥ but
nothing tells us that it should be.

Note that already this simple example leads to a crucial observation that makes the data
exchange problem interesting: solutions are not unique. In fact, there could be infinitely
many solutions: we can use different marked nulls, or can instantiate them with different
values.

If solutions are not unique, how can we answer queries? Consider, for example, a
Boolean (yes/no) query “Is there a flight from Paris to Santiago that arrives before
10am?”. The answer to this query has to be “no”, even though in some solutions we shall
have tuples with arrival time before 10am. However, in others, in particular in the one with
null values, the comparison with 10am will not evaluate to true, and thus we have to return
“no” as the answer.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01616-3 - Foundations of Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak
Excerpt
More information

http://www.cambridge.org/9781107016163
http://www.cambridge.org
http://www.cambridge.org

8 Data exchange by example

On the other hand, the answer to the query “Is there a flight from Paris to Santiago?” is
“yes”, as the tuple including Paris and Santiago will be in every solution. Intuitively, what
we want to do in query answering in data exchange is to return answers that will be true in
every solution. These are called certain answers; we shall define them formally shortly.

XML data exchange

Before outlining the key tasks in data exchange, we briefly look at the XML representation
of the above problem. XML is a flexible data format for storing and exchanging data on the
Web. XML documents are essentially trees that can represent data organized in a way more
complex than the usual relational databases. But each relational database can be encoded
as an XML document; a portion of our example database, representing information about
the Paris–Santiago flight and information about Santiago, is shown in the picture below.

r

FLIGHT

t1

src

Paris

dest

Santiago

airl

Air France

dep

2300

GEO

t2

city

Santiago

country

Chile

popul

6M

The tree has a root r with two children, corresponding to relations FLIGHT and GEO.
Each of these has several children, labeled t1 and t2, respectively, corresponding to tuples
in the relations. We show one tuple in each relation in the example. Each t1-node has four
children that correspond to the attributes of FLIGHT and each t2-node has three children,
with attributes of GEO. Finally, each of the attribute nodes has a child holding the value of
the attribute.

To reformulate a rule in a schema mapping in this language, we show how portions of
trees are restructured. Consider, for example, the rule

FLIGHT(city,dest,airl,dep)∧ GEO(city,country,popul)−→
∃phone SERVES(airl,city,country,phone)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01616-3 - Foundations of Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak
Excerpt
More information

http://www.cambridge.org/9781107016163
http://www.cambridge.org
http://www.cambridge.org

1.2 Overview of the main tasks in data exchange 9

We restate it in the XML context as follows:

r

FLIGHT

t1

src

x

airl

y

GEO

t2

city

x

country

z

−→−→−→

r

SERVES

t

airl

y

city

x

country

z

phone

u

That is, if we have tuples in FLIGHT and GEO that agree on the values of the source and
city attributes, we grab the values of the airline and country attributes, invent a new
value u for phone and create a tuple in relation SERVES.

The rules of XML schema mappings are thus represented via tree patterns. Essentially,
they say that if a certain pattern occurs in a source document, some other pattern, obtained
by its restructuring, must occur in the target.

This view of XML schema mappings is not surprising if we note that in our relational
examples, the rules are obtained by using a relational pattern – i.e., a conjunction of source
atoms – and rearranging them as a conjunction of target atoms. Conjunctions of atoms are
natural analogs of tree patterns. Indeed, the pattern on the right-hand side of the above
rule, for example, can be viewed as the conjunction of the statements about existence of
the following edge relations: between the root and a node labeled SERVES, between that
node and a node labeled t, between the t-node and nodes labeled airl, city, country,
and phone, respectively, and between those nodes and nodes carrying attribute values y, x,
z, and u.

Of course we shall see when we describe XML data exchange that patterns could be
significantly more complicated: they need not be simple translations of relational atoms. In
fact one can use more complicated forms of navigation such as the horizontal ordering of
siblings in a document, or the descendant relation. But for now our goal was to introduce
the idea of tree patterns by means of a straightforward translation of a relational example.

1.2 Overview of the main tasks in data exchange

The key tasks in many database applications can be roughly split into two groups:

1. Static analysis. This mostly involves dealing with schemas; for example, the classical re-
lational database problems such as dependency implication and normalization fall into
this category. Typically, the input one considers is (relatively) small, e.g., a schema or
a set of constraints. Therefore, somewhat higher complexity bounds are normally toler-

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01616-3 - Foundations of Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak
Excerpt
More information

http://www.cambridge.org/9781107016163
http://www.cambridge.org
http://www.cambridge.org

10 Data exchange by example

ated: for example, many problems related to reasoning about dependencies are complete
for complexity classes such as NP, or CONP, or PSPACE.

2. Dealing with data. These are the key problems such as querying or updating the data.
Of course, given the typically large size of databases, only low-complexity algorithms
are tolerated when one handles data. For example, the complexity of evaluating a fixed
relational algebra query is very low (AC0, to be precise), and even more expressive
languages such as Datalog stay in PTIME.

In data exchange, the key tasks too can be split into two groups. For static analysis tasks,
we treat schema mappings as first-class citizens. The questions one deals with are generally
of two kinds:

• Consistency. For these questions, the input is a schema mapping M , and the question is
whether it makes sense: for example, whether there exists a source S that has a solution
under M , or whether all sources of a given schema have solutions. These analyses are
important for ruling out “bad” mappings that are unlikely to be useful in data exchange.

• Operations on mappings. Suppose we have a mapping M from a source schema Rs to a
target schema Rt, and another mapping M ′ that uses Rt as the source schema and maps
it into a schema Ru. Can we combine these mappings into one, the composition of the
two, M ◦M ′, which maps Rs to Ru? Or can we invert a mapping, and find a mapping
M−1 from Rt into Rs, that undoes the transformation performed by M and recovers
as much original information about the source as possible? These questions arise when
one considers schema evolution: as schemas evolve, so do the mappings between them.
And once we understand when and how we can construct mappings such as M ◦M ′ or
M−1, we need to understand their properties with respect to the “existence of solutions”
problem.

Tasks involving data are generally of two kinds.

• Materializing target instances. Suppose we have a schema mapping M and a source
instance S. Which target instance do we materialize? As we already saw, there could be
many – perhaps infinitely many – target instances which are solutions for S under M .
Choosing one we should think of three criteria:

1. it should faithfully represent the information from the source, under the constraints
imposed by the mapping;

2. it should not contain (too much) redundant information;
3. the computational cost of constructing the solution should be reasonable.

• Query answering. Ultimately, we want to answer queries against the target schema. As
we explained, due the existence of multiple solutions, we need to answer them in a way
that is consistent with the source data. So if we have a materialized target T and a query
Q, we need to find a way of evaluating it to produce the set of certain answers. As we
shall see, sometimes computing Q(T) does not give us certain answers, so we may need
to change Q into another query Q′ and then evaluate Q′ on a chosen solution to get the

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01616-3 - Foundations of Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak
Excerpt
More information

http://www.cambridge.org/9781107016163
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9781107016163:

