THERMODYNAMICS, KINETICS, AND MICROPHYSICS OF CLOUDS

Climate change has provided a new impetus for research on clouds and precipitation. One of the greatest uncertainties in current global climate models is cloud feedback, arising from uncertainties in the parameterization of cloud processes and their impact on the global radiation balance. In the past two decades, substantial progress has been made in the simulation of clouds using cloud resolving models. However, most of the parameterizations employed in these models have been empirically based. New theoretical descriptions of cloud processes are now being incorporated into cloud models, using spectral microphysics based on the kinetic equations for the drop and crystal size spectra along with the supersaturation equation, and newer parameterizations of drop activation and ice nucleation based on the further development of the classical nucleation theory. From these models, cloud microphysics parameterizations are being developed for use in global weather and climate models.

Thermodynamics, Kinetics, and Microphysics of Clouds reflects this shift to an increasingly theoretical basis for the simulation and parameterization of cloud processes. The book presents a unified theoretical foundation that provides the basis for incorporating cloud microphysical processes in cloud and climate models in a manner that represents interactions and feedback processes over the relevant range of environmental and parametric conditions. In particular, this book provides:

- the closed system of equations of spectral cloud microphysics that includes kinetic equations for the drop and crystal size spectra for regular and stochastic condensation/deposition and coagulation/accretion along with the supersaturation equations;
- the latest theories and theoretical parameterizations of aerosol hygroscopic growth, drop activation, and ice homogeneous and heterogeneous nucleation, derived from the general principles of thermodynamics and kinetics and suitable for cloud and climate models;
- a theoretical basis for understanding the processes of cloud particle formation, evolution, and precipitation, based on numerical cloud simulations and analytical solutions to the kinetic equations and supersaturation equation;
- a platform for advanced parameterizations of clouds in weather prediction and climate models using these solutions; and
- the scientific foundation for weather and climate modification by cloud seeding.

This book will be invaluable for researchers and advanced students engaged in cloud and aerosol physics, and air pollution and climate research.

Vitaly I. Khvorostyanov is Professor of Physics of the Atmosphere and Hydrosphere, Central Aerological Observatory (CAO), Russian Federation. His research interests are in cloud physics, cloud numerical modeling, atmospheric radiation, and cloud-aerosol and cloud-radiation interactions, with applications for climate studies and weather modification. He has served as Head of the Laboratory of Numerical Modeling of Cloud Seeding at CAO, Coordinator of the Cloud Modeling Programs on Weather Modification by Cloud Seeding in the USSR and Russia, Member of the International GEWEX Radiation Panel of the World Climate Research Program, and Member of the International Working Group on Cloud-Aerosol Interactions. Dr. Khvorostyanov has worked as a visiting scientist and Research Professor in the United States, United Kingdom, France, Germany, and Israel. He has co-authored nearly 200 journal articles and four books: Numerical Simulation of Clouds (1984), Clouds and Climate (1986), Energy-Active Zones: Conceptual Foundations (1989), and Cirrus (2002). Dr. Khvorostyanov is a member of the American Geophysical Union and the American Meteorological Society.

Judith A. Curry is Professor and Chair of the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology. She previously held faculty positions at the University of Colorado, Penn State University, and Purdue University. Dr. Curry’s research interests span a variety of topics in the atmospheric and climate sciences. Current interests include cloud microphysics, air and sea interactions, and climate feedback processes associated with clouds and sea ice. Dr. Curry is co-author of Thermodynamics of Atmospheres and Oceans (1999) and editor of the Encyclopedia of Atmospheric Sciences (2003). She has published more than 190 refereed journal articles. Dr. Curry is a Fellow of the American Meteorological Society, the American Association for the Advancement of Science, and the American Geophysical Union. In 1992, she received the Henry Houghton Award from the American Meteorological Society.
The Cloud
Percy Bysshe Shelley (1820)

I bring fresh showers for the thirsting flowers,
From the seas and the streams;
I bear light shade for the leaves when laid
In their noonday dreams.

From my wings are shaken the dews that waken
The sweet buds every one,
When rocked to rest on their mother's breast,
As she dances about the sun.

I wield the flail of the lashing hail,
And whiten the green plains under,
And then again I dissolve it in rain,
And laugh as I pass in thunder.

I am the daughter of Earth and Water,
And the nursling of the Sky;
I pass through the pores of the oceans and shores;
I change, but I cannot die.

For after the rain, when with never a stain
The pavilion of Heaven is bare
And the winds and sunbeams with their convex gleams
Build up the blue dome of air,
I silently laugh at my own cenotaph
And out of the caverns of rain,
Like a child from the womb, like a ghost from the tomb,
I arise and unbuild it again.

(Poetical Works of Shelley (Cambridge Editions),
by Percy Bysshe Shelley (Author), Newell F. Ford (Introduction).
Publisher: Houghton Mifflin; Revised edition,
THERMODYNAMICS, KINETICS, AND MICROPHYSICS OF CLOUDS

VITALY I. KVOROSTYANOV
Central Aerological Observatory, Russia

JUDITH A. CURRY
Georgia Institute of Technology, USA
Contents

Preface
page xv

1. Introduction
 1.1. Relations among Thermodynamics, Kinetics, and Cloud Microphysics
 1.2. The Correspondence Principle
 1.3. Structure of the Book

2. Clouds and Their Properties
 2.1. Cloud Classification
 2.2. Cloud Regimes and Global Cloud Distribution
 2.2.1. Large-Scale Condensation in Fronts and Cyclones
 2.2.2. Sc-St Clouds and Types of Cloud-Topped Boundary Layer
 2.2.3. Convective Cloudiness in the Intertropical Convergence Zone
 2.2.4. Orographic Cloudiness
 2.3. Cloud Microphysical Properties
 2.4. Size Spectra and Moments
 2.4.1. Inverse Power Laws
 2.4.2. Lognormal Distributions
 2.4.3. Algebraic Distributions
 2.4.4. Gamma Distributions
 2.5. Cloud Optical Properties

Appendix A.2. Evaluation of the Integrals with Lognormal Distribution

3. Thermodynamic Relations
 3.1. Thermodynamic Potentials
 3.2. Statistical Energy Distributions
 3.2.1. The Gibbs Distribution
 3.2.2. The Maxwell Distribution
 3.2.3. The Boltzmann Distribution
 3.2.4. Bose–Einstein Statistics
 3.2.5. Fermi–Dirac Statistics
Contents

3.3. Phase Rules

3.3.1. Bulk Phases

3.3.2. Systems with Curved Interfaces

3.4. Free Energy and Equations of State

3.4.1. An Ideal Gas

3.4.2. Free Energy and the van der Waals Equation of State for a Non-Ideal Gas

3.5. Thermodynamics of Solutions

3.6. General Phase Equilibrium Equation for Solutions

3.6.1. General Equilibrium Equation

3.6.2. The Gibbs–Duhem Relation

3.7. The Clausius–Clapeyron Equation

3.7.1. Equilibrium between Liquid and Ice Bulk Phases

3.7.2. Equilibrium of a Pure Water Drop with Saturated Vapor

3.7.3. Equilibrium of an Ice Crystal with Saturated Vapor

3.7.4. Humidity Variables

3.8. Phase Equilibrium for a Curved Interface—The Kelvin Equation

3.9. Solution Effects and the Köhler Equation

3.10. Thermodynamic Properties of Gas Mixtures and Solutions

3.10.1. Partial Gas Pressures in a Mixture of Gases

3.10.2. Equilibrium of Two Bulk Phases around a Phase Transition Point

3.10.3. Raoult’s Law for Solutions

3.10.4. Freezing Point Depression and Boiling Point Elevation

3.10.5. Relation of Water Activity and Freezing Point Depression

3.11. Adiabatic Processes

3.11.1. Dry Adiabatic Processes

3.11.2. Wet Adiabatic Processes

Appendix A.3. Calculation of Integrals with the Maxwell Distribution

4. Properties of Water and Aqueous Solutions

4.1. Properties of Water at Low Temperatures and High Pressures

4.1.1. Forms of Water at Low Temperatures

4.1.2. Forms of Water at High Pressures

4.2. Theories of Water

4.3. Temperature Ranges in Clouds and Equivalence of Pressure and Solution Effects

4.4. Parameterizations of Water and Ice Thermodynamic Properties

4.4.1. Saturated Vapor Pressures

4.4.2. Heat Capacity of Water and Ice

4.4.3. Latent Heats of Phase Transitions

4.4.4. Surface Tension between Water and Air or Vapor

4.4.5. Surface Tension between Ice and Water or Solutions
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.6.</td>
<td>Surface Tension between Ice and Air or Vapor</td>
<td>113</td>
</tr>
<tr>
<td>4.4.7.</td>
<td>Density of Water</td>
<td>113</td>
</tr>
<tr>
<td>4.4.8.</td>
<td>Density of Ice</td>
<td>113</td>
</tr>
<tr>
<td>4.5.</td>
<td>Heat Capacity and Einstein-Debye Thermodynamic Equations of State for Ice</td>
<td>114</td>
</tr>
<tr>
<td>4.6.</td>
<td>Equations of State for Ice in Terms of Gibbs Free Energy</td>
<td>116</td>
</tr>
<tr>
<td>4.7.</td>
<td>Generalized Equations of State for Fluid Water</td>
<td>120</td>
</tr>
<tr>
<td>4.7.1.</td>
<td>Equations of the van der Waals Type and in Terms of Helmholtz Free Energy</td>
<td>120</td>
</tr>
<tr>
<td>4.7.2.</td>
<td>Equations of State Based on the Concept of the Second Critical Point</td>
<td>122</td>
</tr>
<tr>
<td>A.4.</td>
<td>Relations among Various Pressure Units</td>
<td>125</td>
</tr>
<tr>
<td>5.</td>
<td>Diffusion and Coagulation Growth of Drops and Crystals</td>
<td>127</td>
</tr>
<tr>
<td>5.1.</td>
<td>Diffusional Growth of Individual Drops</td>
<td>127</td>
</tr>
<tr>
<td>5.1.1.</td>
<td>Diffusional Growth Regime</td>
<td>127</td>
</tr>
<tr>
<td>5.1.2.</td>
<td>The Kinetic Regime and Kinetic Corrections to the Growth Rate</td>
<td>129</td>
</tr>
<tr>
<td>5.1.3.</td>
<td>Psychrometric Correction Due to Latent Heat Release</td>
<td>132</td>
</tr>
<tr>
<td>5.1.4.</td>
<td>Radius Growth Rate</td>
<td>135</td>
</tr>
<tr>
<td>5.1.5.</td>
<td>Ventilation Corrections</td>
<td>137</td>
</tr>
<tr>
<td>5.2.</td>
<td>Diffusional Growth of Crystals</td>
<td>138</td>
</tr>
<tr>
<td>5.2.1.</td>
<td>Mass Growth Rates</td>
<td>138</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Axial Growth Rates</td>
<td>141</td>
</tr>
<tr>
<td>5.2.3.</td>
<td>Ventilation Corrections</td>
<td>143</td>
</tr>
<tr>
<td>5.3.</td>
<td>Equations for Water and Ice Supersaturations</td>
<td>144</td>
</tr>
<tr>
<td>5.3.1.</td>
<td>General Form of Equations for Fractional Water Supersaturation</td>
<td>144</td>
</tr>
<tr>
<td>5.3.2.</td>
<td>Supersaturation Relaxation Times and Their Limits</td>
<td>147</td>
</tr>
<tr>
<td>5.3.3.</td>
<td>Equation for Water Supersaturation in Terms of Relaxation Times</td>
<td>149</td>
</tr>
<tr>
<td>5.3.4.</td>
<td>Equivalence of Various Forms of Supersaturation Equations</td>
<td>151</td>
</tr>
<tr>
<td>5.3.5.</td>
<td>Equation for Fractional Ice Supersaturation</td>
<td>152</td>
</tr>
<tr>
<td>5.3.6.</td>
<td>Equilibrium Supersaturations over Water and Ice</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Liquid Clouds</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Ice Clouds</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Mixed Phase Clouds</td>
<td>156</td>
</tr>
<tr>
<td>5.3.7.</td>
<td>Adiabatic Lapse Rates with Non zero Supersaturations</td>
<td>157</td>
</tr>
<tr>
<td>5.4.</td>
<td>The Wegener–Bergeron–Findeisen Process and Cloud Crystallization</td>
<td>158</td>
</tr>
<tr>
<td>5.5.</td>
<td>Kinetic Equations of Condensation and Deposition in the Adiabatic Process</td>
<td>161</td>
</tr>
<tr>
<td>5.5.1.</td>
<td>Derivation of the Kinetic Equations</td>
<td>161</td>
</tr>
<tr>
<td>5.5.2.</td>
<td>Some Properties of Regular Condensation</td>
<td>163</td>
</tr>
<tr>
<td>5.5.3.</td>
<td>Analytical Solution of the Kinetic Equations of Regular Condensation</td>
<td>165</td>
</tr>
<tr>
<td>5.5.4.</td>
<td>Equation for the Integral Supersaturation</td>
<td>167</td>
</tr>
</tbody>
</table>
Contents

5.6. Kinetic Equations of Coagulation 168
5.6.1. Various Forms of the Coagulation Equation 168
5.6.2. Collection Kernels for Various Coagulation Processes 170
Brownian Coagulation 170
Gravitational Coagulation 171
5.7. Thermodynamic and Kinetic Equations for Multidimensional Models 171
6. Wet Aerosol Processes 181
6.1. Introduction 181
6.1.1. Empirical Parameterizations of Hygroscopic Growth 182
6.1.2. Empirical Parameterizations of Droplet Activation 183
6.2. Equilibrium Radii 186
6.2.1. Equilibrium Radii at Subsaturation 187
6.2.2. Equilibrium Radii of Interstitial Aerosol in a Cloud 193
6.3. Critical Radius and Supersaturation 197
6.4. Aerosol Size Spectra 203
6.4.1. Lognormal and Inverse Power Law Size Spectra 203
6.4.2. Approximation of the Lognormal Size Spectra by the Inverse Power Law 203
6.4.3. Examples of the Lognormal Size Spectra, Inverse Power Law, and Power Indices 204
6.4.4. Algebraic Approximation of the Lognormal Distribution 206
6.5. Transformation of the Size Spectra of Wet Aerosol at Varying Humidity 211
6.5.1. Arbitrary Initial Spectrum of Dry Aerosol 211
6.5.2. Lognormal Initial Spectrum of Dry Aerosol 212
6.5.3. Inverse Power Law Spectrum 216
6.5.4. Algebraic Size Spectra 218
6.6. CCN Differential Supersaturation Activity Spectrum 219
6.6.1. Arbitrary Dry Aerosol Size Spectrum 219
6.6.2. Lognormal Activity Spectrum 221
6.6.3. Algebraic Activity Spectrum 226
6.7. Droplet Concentration and the Modified Power Law for Drops Activation 230
6.7.1. Lognormal and Algebraic CCN Spectra 230
6.7.2. Modified Power Law for the Drop Concentration 231
6.7.3. Supersaturation Dependence of Power Law Parameters 233

7. Activation of Cloud Condensation Nuclei into Cloud Drops 241
7.1. Introduction 241
7.2. Integral Supersaturation in Liquid Clouds with Drop Activation 243
7.3. Analytical Solutions to the Supersaturation Equation 246
7.4. Analytical Solutions for the Activation Time, Maximum Supersaturation, and Drop Concentration 250
Contents

7.5. Calculations of CCN Activation Kinetics 254
7.6. Four Analytical Limits of Solution 263
7.7. Limit #1: Small Vertical Velocity, Diffusional Growth Regime 265
 7.7.1. Lower Bound 265
 7.7.2. Upper Bound 268
 7.7.3. Comparison with Twomey’s Power Law 270
7.8. Limit #2: Small Vertical Velocity, Kinetic Growth Regime 273
 7.8.1. Lower Bound 273
 7.8.2. Upper Bound 275
7.9. Limit #3: Large Vertical Velocity, Diffusional Growth Regime 277
 7.9.1. Lower Bound 277
 7.9.2. Upper Bound 277
7.10. Limit #4: Large Vertical Velocity, Kinetic Growth Regime 278
 7.10.1. Lower Bound 278
 7.10.2. Upper Bound 280
7.11. Interpolation Equations and Comparison with Exact Solutions 282

Appendix A.7. Evaluation of the Integrals J_2 and J_3 for Four Limiting Cases 284

8. Homogeneous Nucleation 289
8.1. Metastable States and Nucleation of a New Phase 290
8.2. Nucleation Rates for Condensation and Deposition 293
 8.2.1. Application of Boltzmann Statistics 293
 8.2.2. The Fokker–Planck, and the Frenkel–Zeldovich Kinetic Equations and the Zeldovich Factor 295
 8.2.3. Application of Bose–Einstein Statistics for Condensation and Deposition 299
8.3. Nucleation Rates for Homogeneous Ice Nucleation 300
 8.3.1. Nucleation Rates with the Boltzmann Distribution 300
 8.3.2. Application of Bose–Einstein Statistics for Freezing 303
 8.3.3. Parameterizations of Activation Energy 303
8.4. Semi-empirical Parameterizations of Homogeneous Ice Nucleation 305
8.5. Equations for Water and Ice Supersaturations with Homogeneous Ice Nucleation 311
8.6. Critical Germ Size, Energy, and Homogeneous Freezing Rate 313
 8.6.1. Derivation of the Critical Germ Size, Energy, and Nucleation Rate 313
 8.6.2. Analysis and Properties of the Solution 319
 8.6.3. Comparison with Other Models and Observations 322
 8.6.4. The Freezing of Cloud Drops 325
8.7. Critical Freezing and Melting Temperatures of Homogeneous Freezing 328
 8.7.1. General Expressions Based on Classical Theory 328
 8.7.2. Liquidus Curves 331
 8.7.3. Relation of the Freezing and Melting Point Depressions 332
 8.7.4. Comparison with Observations 333
 8.7.5. Equivalence of Solution and Pressure Effects 339
Contents

8.8. Threshold or Critical Saturation Ratios for Homogeneous Freezing

- **8.8.1. General Equations**
- **8.8.2. Parameterization of Effective Melting Heat**
- **8.8.3. Derivation from Classical Theory of the Water Activity Shift Method**
- **8.8.4. Effects of Various Factors on the Critical Humidity $S_{\text{crit}}^\text{sm}$**
- **8.8.5. Calculations of Critical Relative Humidities over Water and Ice**

8.9. Parcel Model Simulations of the Kinetics of Homogeneous Ice Nucleation

- **8.9.1. Parcel Model Description**
- **8.9.2. Simulation Results**

8.10. Analytical Parameterization of Homogeneous Ice Nucleation

8.10.1. General Features of Homogeneous Ice Nucleation Kinetics

- **8.10.2. The Freezing Rate and Its Simplification**
- **8.10.3. Separation of Temperature and Supersaturation Dependencies**
- **8.10.4. The Evolution of the Nucleation Rate and Crystal Concentration**
- **8.10.5. Evaluation of the Deposition Integral I_{dep}**
- **8.10.6. Solution of Equations for the Supersaturation and for Crystal Concentration**
- **8.10.7. Particular Limiting Cases**
 - **8.10.7.1. Diffusion Growth Limit**
 - **8.10.7.2. Kinetic Growth and Large Particle Limits**
- **8.10.8. Physical Interpretation**

8.11. Temperature Effects and the Homogeneous Freezing of Cloud Drops

Appendix A.8. Evaluation of the Integrals $J_u^{(u)} = \int_0^\infty r_u^{(u)}(t,t_0) \exp(\beta H_t) dt$

9. Heterogeneous Nucleation of Drops and Ice Crystals

- **9.1. Introduction**
- **9.2. Nucleation of Drops by Vapor Deposition on Water-Insoluble Particles**
- **9.3. Modes of Ice Nucleation and Properties of Ice Nuclei**
 - **9.3.1. Modes of Ice Nucleation**
 - **9.3.2. Properties of Ice Nuclei**
- **9.4. Empirical Parameterizations of Heterogeneous Ice Nucleation**
- **9.5. Nucleation of Crystals in the Deposition Mode on Water-Insoluble Particles**
- **9.6. Ice Nucleation by Deliquescence-Freezing and Immersion**
- **9.7. Critical Radius and Energy of Heterogeneous Freezing**
 - **9.7.1. Basic Dependencies of Heterogeneous Freezing**
 - **9.7.2. Volume Heterogeneous Freezing**
 - **9.7.3. Particular Cases of Critical Radius**
 - **9.7.4. Critical Energy of Volume Freezing**
 - **9.7.5. Modification of Critical Energy with Active Sites**
Contents

9.8.2. Separation of Temperature, Supersaturation, and Aerosol Dependences of the Critical Energy and Nucleation Rate 429

9.8.3. Separation of Insoluble Fractions between Activated Drops and Unactivated CCN 434

9.8.4. Characteristic Relaxation Times of CCN Size and Solution Concentration 435

9.9. Surface Freezing and Melting 436

9.9.1. Surface Freezing 436

9.9.2. Surface Melting 438

9.10. Nucleation in a Polydisperse Aerosol 440

9.10.1. Freezing of Haze Particles at Water Subsaturation in the DF Mode 440

9.10.2. Simultaneous Freezing in the DF and Immersion Modes at Water Supersaturation 444

9.11. Critical Freezing and Melting Temperatures 446

9.11.1. General Equations 446

9.11.2. Simplifications of Equations for the Heterogeneous Critical Saturation Ratio 454

9.11.3. Derivation from Classical Theory of the Water Activity Shift Method 456

9.11.4. Calculations of Critical Relative Humidities for Heterogeneous Nucleation 458

9.11.5. Comparison of Critical Humidities for Heterogeneous and Homogeneous Nucleation 463

9.12. Critical Saturation Ratios or Water Activities of Heterogeneous Freezing 452

9.12.1. General Equations 453

9.12.2. Simplifications of Equations for the Heterogeneous Critical Saturation Ratio 454

9.12.5. Comparison of Critical Humidities for Heterogeneous and Homogeneous Nucleation 463

9.13. Parcel Model for a Mixed-Phase Cloud 465

9.13.1. Supersaturation Equation with Nucleation of Drops and Crystals 466

9.13.2. Kinetic Equations for Droplet and Crystal Size Spectra with Particle Nucleation 470

9.14. Parcel Model Simulations of Ice Nucleation Kinetics in Deliquescence-Freezing Mode 470

9.14.1. Introduction 470

9.14.2. Simulation Characteristics 471

9.14.4. Ice Nucleation Effects with Stronger Updrafts 482

Contents

9.15. Comparison of Simulated Crystal Concentrations with Experimental Data and Parameterizations 491
9.16. Thermodynamic Constraints on Heterogeneous Ice Nucleation Schemes 497
9.17. Evaluation of Ice Nucleation and Cloud Phase State Parameterizations 501

10. Parameterizations of Heterogeneous Ice Nucleation 507
10.1. Analytical Parameterization of Heterogeneous Freezing Kinetics Based on Classical Nucleation Theory (CNT) 507
10.1.1. Nucleation Rates in a Polydisperse Aerosol 507
10.1.2. Temporal Evolution of Supersaturation 508
10.1.3. Heterogeneous Nucleation Rate Derived from CNT and Comparison with the Previous Parameterizations 510
10.1.4. Temporal Evolution of the Crystal Concentration 514
10.1.5. Comparison of Crystal Concentrations with Empirical Parameterizations 515
10.1.6. Parameterization for the Large-Scale Models. Case 1: Large N_c and Crystal Concentrations Limited by Kinetics 516
10.1.7. Diffusion Growth Limit 520
10.1.8. The Kinetic Growth Limit, and Small and Large Particle Limits 522
10.1.9. Parameterization for the Large-Scale Models. Case 2: Small IN Concentration N_c and Crystal Concentration Limited by N_c 524
10.2. Temperature Effects and Heterogeneous Freezing of Cloud Drops 525
10.3. Parameterization of Deposition Ice Nucleation Based on Classical Nucleation Theory 529
10.4. General Properties and Empirical Parameterizations of Contact Nucleation 533
10.4.1. General Properties 533
10.4.2. Empirical Parameterizations 535
10.5. Aerosol Scavenging by Drops 536
10.5.1. Brownian Diffusion 536
10.5.2. Thermophoresis 537
10.5.3. Diffusiophoresis 539
10.6. Freezing and Scavenging Rates 541

11. Deliquescence and Efflorescence in Atmospheric Aerosols 547
11.1. Phenomena of Deliquescence and Efflorescence 547
11.2. Theories and Models of Deliquescence and Efflorescence 549
11.3. A Model for Deliquescence of Salt Crystals Based on the Entropy Equation 553
11.4. Applications of the Deliquescence Model 558
11.4.1. The Temperature Dependence of Dissolution Heat 559
11.4.2. The Temperature Dependence of Solubility 559
11.4.3. The Temperature Dependence of the Deliquescence Relative Humidity 562
11.5. Phase Diagram of the Solution and Evaluation of the Eutectic Point 563
11.6. A Model for Efflorescence of Salt Crystals Based on the Entropy Equation 566
Contents

11.7. Applications of the Efflorescence Model 570
 11.7.1. The Temperature Dependence of Efflorescence 570
 11.7.2. The Solute Activity and Mole Fraction Dependence of Efflorescence 571
 11.7.3. The Joint Phase Diagram 573

12. Terminal Velocities of Drops and Crystals 577
 12.1. Review of Previous Theories and Parameterizations 577
 12.2. Basic Equations for Fall Velocities 582
 12.3. Turbulent Corrections 587
 12.4. Asymptotic Values and Applications for Spherical and Nonspherical Particles 588
 12.5. Corrections for Temperature and Pressure 591
 12.6. Results of Calculations 593
 12.6.1. Re-X Relation 593
 12.6.2. The Drag Coefficient and “Crisis of Drag” 594
 12.6.3. Application to Drops 596
 12.6.4. Turbulent Corrections and Their Application to Aggregates 598
 12.6.5. Other Crystal Habits 603
 12.6.6. Application to Hail 605
 12.6.7. Altitude Correction Calculations 606
 12.7. Parameterizations for Large-Scale Models 608
 12.8. Applications for Remote Sensing, Other Objects and Other Planets 610

13. Broad Size Spectra in Clouds and the Theory of Stochastic Condensation 613
 13.1. Introduction 613
 13.1.1. Mechanisms and Theories of the Formation of Broad Size Spectra in Clouds 614
 13.1.2. Kinetic Equations of Stochastic Condensation 618
 13.2. Condensation in a Turbulent Cloud 623
 13.2.1. Basic Equations 623
 13.2.2. Stochastic Equations 624
 13.2.3. Supersaturation Fluctuations 625
 13.3. Evaluation of Correlation Functions 628
 13.3.1. Expansions of Random Characteristics over the Turbulent Frequencies 628
 13.3.2. Supersaturation as a Nonconservative Variable 629
 13.3.3. Covariances with Supersaturation 630
 13.3.4. Covariances with the Drop Size Distribution Function 631
 13.4. General Kinetic Equations of Stochastic Condensation 633
 13.5. Assumptions and Simplifications for Analytical Solutions 636
 13.6. Approximation Neglecting the Diffusional Growth of Larger Particles 639
 13.6.1. Small Particle Solution 640
 13.6.2. Large Particle Solution 640
 13.6.3. Merged Solution 641
 13.6.4. Asymptotic Solutions 643
 13.7. Solution Including the Diffusional Growth of Large Particles, Sedimentation, and Coagulation 645
Contents

13.8 Physical Interpretation of the Parameters
 13.8.1 Various Forms of Solution Parameters
 13.8.2 Solutions in the Form of Gamma Distributions
 13.8.3 Solutions in the Form of Inverse Power Laws

13.9 Applications of the Solution for Liquid Clouds

13.10 Comparison with Previous Theories and Observations

13.11 Calculation of Size Spectra for a Crystalline Cloud

13.12 Derivation of the Generalized Stochastic Kinetic Equations
 from the Fokker–Planck Equation
 13.12.1 Chapman–Kolmogorov and Fokker–Planck Equations
 13.12.2 Spatially Homogeneous Cloud
 13.12.3 Spatially Inhomogeneous Cloud

Appendix A.13 Derivation and Solution of the Kummer Equation in Section 13.6.3

Appendix B.13 Solutions of Kinetic Equation of Section 13.7, Taking into Account Diffusional Growth in the Tail

14. Analytical Solutions to the Stochastic Kinetic Equation for Precipitating Clouds
 14.1 Introduction
 14.2 Derivation of Kinetic Equations in Continuous Collection Approximations
 14.3 Basic Equations and Assumptions for the Large-Size Fraction
 14.4 Solutions for the Large-Size Fraction Taking into Account Diffusion Growth and Coagulation
 14.4.1 General Solution
 14.4.2 Particular Case: Fall Speed as a Linear Function of Particle Size
 14.4.3 Particular Case: Coagulation Growth Rate Much Greater than Diffusion Growth Rate
 14.4.4 Particular Case: Aerodynamic Regime for the Fall Speed of Large Particles
 14.4.5 Solutions for Subcloud Layers

14.5 Interpretation of Solutions
 14.5.1 General Analysis of the Parameters
 14.5.2 Example Calculations for a Crystalline Cloud
 14.5.3 General Interpretation of the Solutions

14.6 Autoconversion and Corrections to the Analytical Solutions

14.7 The Coagulation Equation as the Integral Chapman–Kolmogorov and Differential Fokker–Planck Equations
 14.7.1 Evaluation of the Integrals in Section 14.4.2 for $v(r) = A_r$
 14.7.2 Evaluation of the Integrals in Section 14.4.4 for $v(r) = A_r r^{1/2}$

Appendix A.14 Evaluation of the Integrals in Section 14.4.2 for $v(r) = A_r$

Appendix B.14 Evaluation of the Integrals in Section 14.4.4 for $v(r) = A_r r^{1/2}$

References
Notations
Index
Preface

Cloud microphysics is a branch of cloud physics that studies initiation, growth, and dissipation of cloud and precipitation particles. Cloud microphysics is governed by the thermodynamic and kinetic processes in clouds. The field of cloud microphysics has been intensively developed since the 1940s when the first successful experiments on cloud seeding were performed. The field has received additional impetus in recent years from the challenges associated with forecasting precipitation and understanding aerosol-cloud interactions in the context of climate change and feedback processes. Several books on cloud microphysics are available, including Mason (1957), Fletcher (1962, 1970a), Dufour and Defay (1963), Sedunov (1974), Voloshchuk and Sedunov (1975), Voloshchuk (1984), Matveev (1984), Young (1993), Pruppacher and Klett (1997), and Cotton et al. (2011).

Thermodynamics, Kinetics, and Microphysics of Clouds extends the subject of cloud microphysics beyond these previous treatments. The goals and contents of this book are formulated to:

- Present in compact form the major thermodynamic relations and kinetic equations required for theoretical consideration of cloud microphysics;
- Review the currently known states of water in liquid, crystalline, and amorphous forms, and the conceptual modern theories of water and equations of state for water in various states;
- Formulate a closed system of equations that describe the kinetics of cloud microphysical processes and is suitable both for analytical studies and for inclusion in numerical models;
- Derive from theory generalized analytical parameterizations for aerosol deliquescence, hygroscopic growth, efflorescence, and drop activation and ice nucleation in various modes;
- Demonstrate that these theoretical parameterizations generalize and unify previous parameterizations and include them as particular cases; express previous empirical parameters via atmospheric and aerosol parameters and theoretical quantities;
- Derive the kinetic equations of stochastic condensation and coagulation and obtain their analytical solutions that reproduce the observed drop and crystal size spectra; express parameters of empirical distributions from theory; and
- Outline a path for future generalizations of the kinetic equations of cloud microphysics based on the Chapman–Kolmogorov and Fokker–Planck equations.

Using the general principles of thermodynamics and kinetics, a closed system of equations is formulated that includes kinetic equations for the drop and crystal size spectra along with the supersaturation equations. Using these equations and further developing classical nucleation theory, theories are
developed of aerosol hygroscopic growth, drop activation, and ice homogeneous and heterogeneous nucleation. Analytical expressions are obtained for the particle concentration, critical radii and energies of nucleation, nucleation rates that are expressed as functions of temperature, saturation ratio, pressure, and aerosol concentration simultaneously and in factorized form. It is shown that the new theoretical expressions generalize previous empirical parameterizations, can reduce to them in some particular cases, and their empirical parameters are expressed via the aerosol parameters and physical constants. The validity of these new theoretical expressions is verified in comparison with experimental data, previous empirical and semi-empirical parameterizations, and parcel model simulations. A similar theory is developed for the aerosol deliquescence and efflorescence. This allows for the first time calculation from the theory of a unified phase diagram for solutions that are in agreement with experimental phase diagrams.

Various analytical solutions to the kinetic equations and supersaturation equations are obtained for adiabatic and non-adiabatic processes. These solutions are suitable both for analytical studies of condensation and for inclusion in the numerical models. This system of equations, including kinetic equations for drops and crystals and integral supersaturation equations, is generalized for the turbulent atmosphere and multidimensional models. A fast algorithm for a numerical solution based on the splitting method is described. Spectral bin microphysical method was applied for many years in various 1D, 2D, and 3D models for various cloud types, and its applicability in the models of various scales and dimensions is discussed.

The kinetic equations of stochastic condensation in a turbulent atmosphere are derived and generalized taking into account the coagulation and accretion processes. Various analytical solutions to these stochastic equations are obtained, whose functional forms are similar to the gamma distributions and to exponential and inverse power laws that have been observed in clouds and precipitation. The solution parameters are expressed via the atmospheric characteristics and physical constants, and the solutions are verified through comparison with experimentally observed size spectra. These solutions provide explanations of various empirical parameterizations and a platform for their refinement.

In addition to advancing our basic understanding of cloud microphysical processes, the theoretical approach employed in this book supports the explanation and interpretation of laboratory and field measurements in the context of instrument capabilities and limitations and motivates the design of future laboratory and field experiments. In the context of models that include cloud processes, ranging from small-scale models of clouds and atmospheric chemistry to global weather and climate models, the unified theoretical foundations presented here provide the basis for incorporating cloud microphysical processes in these models in a manner that represents the process interactions and feedback processes over the relevant range of environmental and parametric conditions. Further, the analytical solutions presented here provide the basis for computationally efficient parameterizations that include the relevant parametric dependencies. The methods of cloud simulation using spectral bin microphysics described here are especially suitable for modeling of weather modification by cloud seeding since these methods are almost always based on modification of cloud microstructure and phase state. These methods are also convenient for studies of inadvertent cloud modification by anthropogenic and natural pollutions and for studies of cloud-radiation interactions.

This book incorporates the heritage of Russian cloud physics that introduced and developed the kinetic equations for drop and crystal diffusion growth, the fast numerical algorithms for their
Preface

solutions, and the stochastic approach to cloud microphysical processes. This Russian heritage is combined with the best knowledge of cloud microphysics acquired and described in the Western literature over the past several decades. A large amount of the material presented in this book is based on original work conducted jointly by the authors over almost two decades. Some of this research has been published previously in journal articles, but a large portion of this material is being published here in this book for the first time, notably the parameterization of heterogeneous ice nucleation and the theory of aerosol deliquescence and efflorescence.

Integration of Russian and Western perspectives on cloud physics was facilitated by the 1972 bilateral treaty between the U.S. and USSR on Agreement and Cooperation in the Field of Environmental Protection, specifically under Working Group VIII – The Influence of Environmental Change on Climate. Its regular meetings and exchanges of delegations and information promoted international collaboration, provided the foundation for long-term cooperation, and outlined proposals for joint research. With the advent of the World Climate Research Programme (WCRP) in 1980, both Khvorostyanov and Curry subsequently became members of the WCRP Working Group on Radiative Fluxes, which later became the Radiation Panel of the Global Water and Energy Exchange Experiment (GEWEX). The GEWEX Radiation Panel had regular annual meetings (where the authors participated and met), which initiated the collaboration that has lasted for almost two decades, resulted in more than 30 joint publications, and culminated in this book.

This book bridges Russian and Western perspectives on cloud physics. Khvorostyanov’s involvement in the evolution of the Russian school of cloud physics includes development of cloud models with spectral bin microphysics and applications to cloud seeding and cloud-radiation interactions. Curry’s early cloud microphysics research focused on aircraft observations of cloud microphysics and the development of parameterizations for cloud and climate models. Over the past 18 years, Khvorostyanov and Curry have collaborated on a range of cloud microphysical topics of relevance to understanding and parameterizing cloud processes for cloud and climate models, that integrate the Russian perspectives on cloud microphysics into the broader community, and that combine Eastern and Western approaches to cloud microphysics. In addition to summarizing and integrating these perspectives and the broad body of recent research in cloud microphysics, throughout the book a number of new results are included, as well as extensions and generalizations of existing ones.

This monograph is intended to provide a source of information for scientists engaged in teaching and research in cloud physics and dynamics, aerosol physics, air pollution, and weather modification. The book can be used as a textbook to provide graduate-level students with the theoretical foundations of cloud microphysics. Researchers and students should have a basic background in physics and thermodynamics and mathematical physics before using this book. Beyond this basic background, the authors have made every effort to make the book as self-inclusive as possible. Formal derivations and analytical solutions are emphasized, with every effort made to make the mathematical steps easy to follow, including additional details in the appendices. A comprehensive bibliography is provided that references seminal material in the primary literature and previous textbooks and monographs.

The authors gratefully acknowledge support from the DOE Atmospheric Radiation Measurement Program and numerous NASA projects. Many basic concepts and views described in this book were accumulated in multiyear fruitful collaboration with Prof. Mikhail Buikov, Prof. Kirill Kondratyev, and Prof. Kenneth Sassen, to whom the authors are thankful. The authors also greatly appreciate the
numerous useful discussions over many years on multiple aspects of cloud and climate studies with Drs. Al Arking, Stefan Bakan, Neville Fletcher, Steve Ghan, Hartmut Grassl, Olaf Hellmuth, Peter Hobbs, Paul Mason, Hugh Morrison, Leonid Matveev, Anna Pirnach, Bill Rossow, Yuri Sedunov, Robert Schiffer, Victor Smirnov, Alexander Stepanov, Graeme Stephens, Vladimir Voloshchuk, and many of our colleagues and co-authors who helped clarify various aspects of cloud microphysics.

In addition, the authors would like to thank Dr. Vladimir Chukin, Dr. Paul DeMott, and Dr. Hitoshi Kanno for their useful discussions on ice nucleation and for providing experimental data. Dr. Osamu Mishima and Dr. Thomas Koop are also thanked for their permission to adapt and use their conceptual current schemes of the water states and phase diagrams. The authors are also grateful to Mrs. Sylvaine Ferrachat from the group of Prof. Ulrike Lohmann at the Institute for Atmospheric and Climate Science, Zurich, Switzerland, for preparing and providing the figure of the observed climatic global cloud field based on the ISCCP data. They would also like to thank Dr. Yuxin Yun from the group of Prof. Joyce Penner at the University of Michigan for providing the figure of the global cloud field simulated with the climate model. Useful discussions with, and help from, Prof. Stephen Warren and Dr. Ryan Eastman in preparing the figures of the global cloud field are greatly appreciated. Thanks also to Drs. Vladimir Chukin, Olaf Hellmuth, and Vladimir Nikulin for their help in preparing some of the figures.

This book was greatly facilitated and supported by the editors at Cambridge University Press: Dr. Matt Lloyd, Ms. Sarika Narula, and Mrs. Shari Chappell; Ms. Saradha Chandrakasan (Project Manager at S4Carlisle); and Mr. Michael McGee (Copy Editor). The authors greatly appreciate their excellent organizational and editorial work. The authors are grateful to the Art Team of the S4Carlisle Publishing Services who carefully and skillfully created the artwork, preparing the figures for publication. Lastly, the authors gratefully acknowledge the permission granted them for reproducing figures from published articles by the American Meteorological Society, the American Geophysical Union, John Wiley & Sons, and the American Chemical Society.

Vitaly I. Khvorostyanov, Moscow, Russia
Judith A. Curry, Atlanta, Georgia, USA