Ultra-wideband RF System Engineering

This comprehensive summary of the state of the art in ultra-wideband (UWB) system engineering takes you through all aspects of UWB design, from components through the propagation channel to system engineering aspects.

Mathematical tools and basics are covered, allowing for a complete characterization and description of the UWB scenario, in both the time and the frequency domains. UWB MMICs, antennas, antenna arrays, and filters are described, as well as quality measurement parameters and design methods for specific applications. The UWB propagation channel is discussed, including a complete mathematical description together with modeling tools. A system analysis is offered, addressing both radio and radar systems, and techniques for optimization and calibration. Finally, an overview of future applications of UWB technology is presented.

This volume is ideal for scientists as well as for RF system and component engineers working in short range wireless technologies.

Thomas Zwick is a full Professor at the Karlsruhe Institute of Technology (KIT), Germany, and also Director of the Institut für Hochfrequenztechnik und Elektronik (IHE) at the KIT, both roles commencing in October 2007. He has been President of the Institute for Microwaves and Antennas (IMA) since 2008.

Werner Wiesbeck is a full Professor and Distinguished Scientist at the Karlsruhe Institute of Technology (KIT). He has received the IEEE Millennium Award, the IEEE GRS Distinguished Achievement Award, and the IEEE Electromagnetics Award. He is a Fellow of the IEEE, an Honorary Life Member of IEEE GRS-S, a Member of the Heidelberger Academy of Sciences and Humanities, and a Member of the German National Academy of Science and Engineering (acatech).

Jens Timmermann works at Astrium GmbH, Germany, and lectures in electrical engineering at Baden-Wuerttemberg Cooperative State University in Ravensburg, Germany. He is a member of the New York Academy of Sciences.

Grzegorz Adamiuk works on future spaceborne radar systems at Astrium GmbH, Germany. In 2010, he received the prestigious Südwestmetall Award for his scientific work.

Ultra-Wideband RF System Engineering

Edited by

THOMAS ZWICK Karlsruhe Institute of Technology

WERNER WIESBECK Karlsruhe Institute of Technology

JENS TIMMERMANN Astrium GmbH

GRZEGORZ ADAMIUK

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107015555

© Cambridge University Press & Assessment 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data
Ultra-wideband RF system engineering / edited by Thomas Zwick, Werner Wiesbeck, Jens Timmermann, Grzegorz Adamiuk. pages cm
Includes bibliographical references and index.
ISBN 978-1-107-01555-5 (hardback : alkaline paper)
1. Radio – Transmitters and transmission. 2. Ultra-wideband devices.
3. Radio frequency. 4. Ultra-wideband antennas. 5. Ultra-wideband radar.
I. Zwick, Thomas. II. Wiesbeck, W. (Werner)
TK6553.U48 2013
621.3841'5 – dc23 2013030429
ISBN 978-1-107-01555-5 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

3

Cambridge University Press & Assessment 978-1-107-01555-5 — Ultra-wideband RF System Engineering Edited by Thomas Zwick , Werner Wiesbeck , Jens Timmermann , Grzegorz Adamiuk Frontmatter <u>More Information</u>

Contents

List	of contributors	<i>page</i> vii
Pref	face	ix
Acki	nowledgments	X
Note	ation	xi
Acro	onyms	xvii
Intro	oduction	1
Jens	Timmermann and Thomas Zwick	
1.1	Definition of UWB signals	1
1.2	Worldwide regulations	2
Fund	damentals of UWB radio transmission	5
Jens	Timmermann and Thomas Zwick	
2.1	Description of the UWB radio channel	5
2.2	UWB propagation channel modeling	10
2.3	Parameters for UWB RF system and component	
	characterization	17
2.4	Impulse radio versus orthogonal frequency division	
	multiplexing	23
2.5	UWB pulse shapes and pulse shape generation	24
2.6	Modulation and coding	26
2.7	Time hopping	30
2.8	Basic transmitter architectures	31
2.9	Basic receiver architectures	32
UWE	B antennas	36
Grzeg	jorz Adamiuk, Xuyang Li and Werner Wiesbeck	
3.1	UWB antenna measurement methods	36
3.2	UWB radiator design	43
3.3	UWB antenna system aspects	56
3.4	Polarization diversity antennas	58
3.5	UWB antennas for medical applications	68

vi	Contents	
4	UWB antenna arrays Grzegorz Adamiuk	77
	4.1 Array factor in UWB systems4.2 UWB amplitude monopulse arrays	77 87
5	Monolithic integrated circuits for UWB transceivers Gunter Fischer and Christoph Scheytt	94
	 5.1 Pulse radio transceiver requirements 5.2 Pulse generation 5.3 Pulse detection 5.4 RF frontend components 5.5 Monolithic integration 	94 97 103 109 113
6	UWB applications Xuyang Li, Jens Timmermann, Werner Wiesbeck and Łukasz Żwirełło	116
	 6.1 UWB communication 6.2 UWB localization 6.3 UWB radar 6.4 UWB imaging 6.5 UWB medical applications 	116 136 151 160 169
	References Index	171 183

Contributors

Grzegorz Adamiuk Astrium GmbH, Germany

Gunter Fischer Leibniz-Institut für innovative Mikroelektronik, Germany

Xuyang Li Robert Bosch GmbH, Germany

Christoph Scheytt Universität Paderborn, Germany

Jens Timmermann Astrium GmbH, Germany

Werner Wiesbeck Karlsruhe Institute of Technology, Germany

Thomas Zwick Karlsruhe Institute of Technology, Germany

Łukasz Żwirełło Karlsruhe Institute of Technology, Germany

Preface

For many scientists and engineers working in ultra-wideband technology, it seems that the idea of using signals with such a wide instantaneous bandwidth was spread by the US FCC with the accreditation of the frequency band from 3.1 to 10.6 GHz. But, if we look back in history, we find that even the first man-made electromagnetic waves were generated by sparks. Especially famous for electromagnetic research was Heinrich Hertz who, in the 1880s, verified the speed of propagation of electromagnetic waves, their polarization and interaction with objects, and the correct description of these waves by Maxwell's equations at our university in Karlsruhe, Germany. Before this time, electromagnetic waves could only be generated by the aforementioned sparks and were thus ultra-wideband.

Ultra-wideband was banned in the 1920s because it occupied too great a portion of the spectrum and from this point was primarily limited to military applications. This was until 1992 when Leopold Felsen, Lawrence Carin, and Henry Bertoni organized a conference on ultra-wideband, short-pulse electromagnetics in Brooklyn. Our institution, the Institut für Höchstfrequenztechnik und Elektronik (now the Institut für Hochfrequenztechnik und Elektronik) had the privilege of participating in this first conference on ultra-wideband. The topics at the conference were so fascinating that we decided to step into this area. The first research topics were in ground penetration radar, with the idea of detecting anti-personnel mines.

After the first conference a number of other colleagues stepped into the ultra-wideband area and a real ultra-wideband community was established. Since then, in our institution, numerous diploma and master's students, and also PhD candidates, have been working in the ultra-wideband area and its various applications such as radar, communications, localization and medical applications. During this time a detailed knowledge of ultra-wideband electromagnetics, components and system engineering has been developed. As usual, selected topics were published at world-leading conferences and in renowned journals, but most of the detailed results were documented in various internal reports and stored at our laboratory. In 2010 Professor Peter Russer from the Technical University in Munich encouraged us to publish this wide knowledge in a single volume and make it available for the whole community. Our motivation has been to focus on selected topics from the state of the art in ultra-wideband engineering, which will help the reader to understand and develop their ultra-wideband systems and inspire new ideas for further research in this prospective area.

Acknowledgments

The authors and editors would like to thank all those who have supported them with ideas and research projects both before and throughout the writing of this book. In particular, we are grateful to all the diploma, master's and PhD students who contributed a major part to this book through their research and thesis projects. Special thanks go to the German Science Foundation (Deutsche Forschungsgemeinschaft) for their continuous support of our ultra-wideband research work in the UKoLoS program from 2004 to 2012 [167]. Without their funding and encouragement, neither the intensity nor the breadth of our scientific research would have been possible. Within the UKoLoS program, we have enjoyed a particularly fruitful exchange with our colleagues at the Universities of Ilmenau, Berlin, Erlangen-Nürnberg, Duisburg-Essen, Hannover and Ulm. UKoLoS was made a true success by the project's coordinator Professor Dr.-Ing. habil. Rainer Thomä of the University of Ilmenau, whose progressive leadership we have greatly valued.

We would like to acknowledge that the work done by Grzegorz Adamiuk, Xuyang Li, and Jens Timmermann was undertaken during their time at Karlsruhe Institute of Technology. They have since moved to new establishments detailed in the list of contributors.

Finally, we would like to thank our various industrial partners for their support in the development of components and systems for dedicated ultra-wideband applications. We find ourselves in the very fortunate position of being able to rely on close links with German industry, and we do acknowledge that such backing can never be taken for granted. We may not have included all the valuable sponsors, contacts, and sources of ideas from which we have profited in this acknowledgment. Nevertheless, we wish to express our gratitude to all the readers of this book who may feel that they have contributed in one way or another.

> Prof. Dr.-Ing. Thomas Zwick Prof. Dr.-Ing. Dr. h.c. Dr.-Ing. E.h. mult. Werner Wiesbeck Dr.-Ing. Jens Timmermann Dr.-Ing. Grzegorz Adamiuk

Notation

Latin symbols

ã	forward propagating wave amplitude in the frequency domain
a	forward propagating wave amplitude in the time domain
$A_{\rm avg}$	average level of the peak values of the received pulses
A_{W}	effective antenna area
A_{xt}	average peak level of the noise or cross-talk signal
$af(t, \psi)$	array factor in the time domain
$AF(f, \psi)$	array factor in the frequency domain
b	backward propagating wave amplitude in the time domain
$ ilde{b}$	backward propagating wave amplitude in the frequency domain
В	observation point
В	signal bandwidth
B_{a}	absolute bandwidth
$B_{\rm r}$	relative bandwidth
BW	impedance bandwidth ($S_{11} < -3$ dB)
С	Shannon channel capacity
С	complex radiation pattern
d	distortion
d	distance between array elements
d	distance
D	antenna dimension
D	directivity
e	electric field strength vector in the time domain
E_{b}	bit energy
Е	electric field strength vector in the frequency domain
$\mathbf{E}^{\mathbf{S}}$	scattered electric field strength
f	frequency
f_{c}	geometric center frequency
f_1	lower frequency bound
$f_{ m u}$	upper frequency bound
f_{PRF}	pulse repetition frequency
F	fidelity
g_0	Green's function of free space

i	Notation	
	$g_{ m T}$	transient gain
	G	antenna gain
	G_{Rx}	antenna gain of receiver
	G_{Tx}	antenna gain of transmitter
	h	impulse response in the time domain
	$h_{\rm Rx}$	height of receiver over ground
	h_{Tx}	height of transmitter over ground
	Н	transfer function in the frequency domain
	$H_{ m G}$	generator voltage transfer function
	$H_{\rm ges}$	overall transfer function
	H_{Klm}	port voltage transfer function
	h	full polarimetric impulse response in the time domain
	Н	full polarimetric transfer function in the frequency domain
	\mathbf{H}_{oc}	effective antenna height related to open circuit voltage
	i	counter
	i	current in the time domain
	Ι	current in the frequency domain
	j	imaginary unit $j = \sqrt{-1}$
	j	current density in the time domain
	\mathbf{j}^{δ}	current density in the time domain related to a Dirac excitation
	J	current density in the frequency domain
	k	wave number
	Κ	constant of Wiener filter
	1	length
	$L_{\rm FS}(f)$	free-space attenuation
	$L_{\rm FS,UWB}(f)$	free-space attenuation of UWB signal
	$L_{\text{two-path}}(f)$	free-space attenuation of two-path model
	m	counter
	M	number of positions
	n	counter
	N	number of elements
	N	noise power
	N_0	noise spectral density
	N_m	number of propagation paths
	Northo	number of orthogonal pulses
	N_{TH}	number of time-hopping time slots
	0	center of origin
	O_Q	center of radiation
	p	polarimetric matching
	р	peak value of impulse response
	p(t)	pulse shape in the time domain
	$P_{\rm loss}$	loss

xiii

$P_{\rm refl}$	reflected power
$P_{\rm Rx}$	total receive power
P_{Tx}	total transmit power
Q	quality factor
Q	error function
r	radius, distance to transmitting antenna
ĩ	reflection coefficient in the frequency domain
r _A	radius of smallest sphere that can contain the antenna
r _{CCF}	cross-correlation function
r _Q	distance from center of origin to center of radiation
$r_{\rm TxRx}$	distance between transmitter and receiver
R	data rate
S	signal power density
S	signal power
S_{11}	input reflection coefficient
S_{21}	transmission coefficient
S_{12}	feedback coefficient
S ₂₂	output reflection coefficient
[S]	scattering matrix
S/H	sample and hold
t	time
Т	duration in time or duration of a period
Т	temperature
T_0	time step
T _p	pulse duration
$T_{\rm PPM}$	PPM time offset
T_{TH}	length of time-hopping time slot
\mathbf{T}_i	transmission coefficient of polarimetric propagation path
и	voltage in the time domain
U	voltage in the frequency domain
$U_{ m BP}$	bandpass signal
$U_{ m G}$	generator open circuit voltage
$U_{ m oc}$	receiving antenna open circuit voltage
V	volume
w_i	weighting coefficient used in the time domain
W_i	weighting coefficient used in the frequency domain
Ζ	impedance
$Z_{\rm C}$	characteristic impedance
$Z_{\rm G}$	generator impedance
$Z_{ m L}$	load impedance

xiv Notation

Greek symbols

α	fraction of peak value used in ringing definition
α	attenuation coefficient
β	phase coefficient
γ	absolute value of reflection coefficient of second path
γ	complex propagation constant
δ	Dirac impulse
Δl	path length difference
ΔR	range resolution
3	permittivity
$\mathcal{E}_0^{}$	free-space permittivity
ε'_{r}	real part of relative permittivity
$arepsilon_{ m r}^{\prime} arepsilon_{ m r}^{\prime\prime}$	imaginary part of relative permittivity
η	efficiency
θ	elevation angle in spherical coordinates
$\Theta_{ m mb}$	main beam direction
λ	wavelength
λ_0	free-space wavelength at center frequency
ζ	polarimetric ratio
ρ	cross-correlation coefficient
σ	conductivity, standard deviation of the noise signal
σ	conductivity of medium
σ_G	standard deviation of G
$\sigma_{ au_{ m G}}$	standard deviation of group delay
τ	time duration or delay
$\overline{ au}_{\mathrm{D}}$	average delay time
$ au_{ m DS}$	delay spread
$ au_e$	true time delay increment
$ au_{ m FWHM}$	duration of full width at half maximum
$ au_{ m g}$	group delay
$ au_{ m r}$	duration of ringing
$ au_{ m rad}$	antenna signal delay from port to far field port
$ au_{\mathrm{TOF}}$	time of flight
ϕ	phase of reflection coefficient of second path
Φ	electric potential in the time domain
φ	phase angle
ψ	azimuth angle in spherical coordinates
$\psi_{ m mb}$	main beam direction
ω	angular frequency
Ω	steradian

Notation

XV

Operators and mathematical symbols

r	scalar
r	vector
\mathbf{r}^{T}	vector r transposed
ŕ	unit vector parallel r
$\hat{\mathbf{r}}_{ heta}$	local base unit vector in θ -direction
r _w	local base unit vector in ψ -direction
$\hat{\mathbf{r}}_r$	local base unit vector in r-direction
	with $\hat{\mathbf{r}}_r = \hat{\mathbf{r}}$ in spherical coordinates
$\hat{\mathbf{r}}_z$	local base unit vector in z-direction ($\theta = 0$)
r	absolute value of r
$\mathbf{r}_1 \cdot \mathbf{r}_2$	scalar product of \mathbf{r}_1 and \mathbf{r}_2
$\mathbf{r}_1 \times \mathbf{r}_2$	vector product of \mathbf{r}_1 and \mathbf{r}_2
$r_1 * r_2$	convolution integral of r_1 and r_2
$r_1 * r_2$	convolution integral analog to a scalar product of \mathbf{r}_1 and \mathbf{r}_2
[r]	matrix
[<i>r</i>]	physical unit of <i>r</i>
$\Re\left\{\cdot ight\}$	real part
\mathbb{R}^{3}	3D vector space
$\mathbb{R}^{3} \setminus V_{A}$	\mathbb{R}^3 without the volume V_A
\mathbf{H}^+	analytic signal of H
\mathbf{H}^*	conjugate complex of H
\mathbf{H}^{T}	transposed matrix of H
$\mathcal{H}\left\{ \cdot ight\}$	Hilbert transform
$\ \mathbf{H}\ _p$	<i>p</i> -norm of $ \mathbf{H} $
\overline{G}	integral average of G over frequency
$ h(t) _2$	2-norm of $h(t)$
$\angle H$	phase angle of <i>H</i>
det	determinate
div a	divergence (sources) of a
exp	exponential function
grad a	gradient of a
ln	natural logarithm
log	logarithm to the base 10
max	maximum
min	minimum
rot a	rotation (curls) of a
sup	supremum
∞	infinity
\propto	proportional

xvi Notation

General indices

A, ant	antenna
ar	array
BP	bandpass
со	copolarisation
feed	feed
FF	far field
FS	free space
G	generator
h	horizontal
L	load or line
mb	main beam
Mod	model
PC	propagation channel
r	radial
ref	reference
rel	relative
Rx	receiver
Tst	test
Tx	transmitter
v	vertical
х	cross-polarisation
xt	cross-talk
+	forward propagating wave
—	backward propagating wave

Constants

speed of light in vacuum: 2.997925×10^8 m/s
Euler-Mascheroni constant: 0.577
Euler number: 2.718
permittivity of vacuum: 8.854×10^{-12} As/(Vm)
Boltzmann constant
permeability of vacuum: $4\pi \times 10^{-7}$ Vs/(Am)
$\approx 1.257 \ldots \times 10^{-6} \text{ Vs/(Am)}$
ratio of circumference to diameter of a circle 3.1415
wave impedance in vacuum: $Z_{F0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377 \Omega$

Acronyms

3D	3-dimensional
ACR	auto-correlation receiver
ADC	analog-digital converter
ADS	advanced design system
AF	array factor
AIR	antenna impulse response
AoA	angle of arrival
AoD	angle of departure
AUT	antenna under test
AWGN	additive white Gaussian noise
BAN	body area network
BB	base band
BBH	broadband horn antenna
BER	bit error rate
BJT	bipolar junction transistor
BPSK	binary phase shift keying
bs	boresight
BS	base station
CAD	computer aided design
CDF	cumulative density function
CMOS	complementary metal oxide semiconductor
CPW	coplanar waveguide
CR	correlation receiver
CSL	coupled slotline
CT	computed tomography
CW	continuous wave
DAC	digital-analog converter
DC	direct current
DCO	digitally controlled oscillator
DFG	Deutsche Forschungsgemeinschaft (German Research Foundation)
DFT	discrete Fourier transform
DLL	delay-locked loop
DoA	direction of arrival

ii	Acronyms	
	DoD	direction of departure
	DOP	dilution of precision
	DS	delay spread
	DUT	device under test
	ECC	Electronic Communications Committee
	ECG	electrocardiogram
	EF	element factor
	EIRP	equivalent isotropically radiated power
	EM	electromagnetic
	ESD	electrostatic discharge
	EuMA	European Microwave Association
	EurAAP	European Association on Antennas and Propagation
	FBW	fractional bandwidth
	FCC FD	Federal Communications Commission
	FD FDTD	frequency domain finite difference time domain
	FFT	fast Fourier transform
	FIR	finite impulse response
	FPGA	field programmable gate array
	FR	flashing receiver
	FWHM	full width at half maximum
	GDOP	geometrical dilution of precision
	HDOP	horizontal dilution of precision
	HPIB	Hewlett Packard interconnect bus
	IC	integrated circuit
	ICU	intensive care unit
	IEE	Institution of Electrical Engineers, part of IET since 2007
	IEEE	Institute of Electrical and Electronics Engineers
	IET	Institution of Engineering and Technology
	IFFT	inverse fast Fourier transformation
	IHE	Institut für Hochfrequenztechnik und Elektronik at KIT
	IHP	Innovations for High Performance Microelectronics (Research
		Institute of the Leibniz Association in Frankfurt/Oder, Germany
	IIR	infinite impulse response
	INS	inertial navigation system
	IR IR	impulse response
	IR-UWB	impulse radio ultra-wideband
	ISI	inter-symbol interference
	ISO	International Organization for Standardization
	KIT	Karlsruhe Institute of Technology
	lhc LMS	left-hand circular
		least mean square
	LNA	low-noise amplifier

Acronyms

xix

LO	local oscillator		
log-per	logarithmic periodic antenna		
LOS	line-of-sight		
LPDA	logarithmic periodic dipole array		
LR	left-right		
LTI	linear time invariant		
LU	lower-upper		
LUT	look-up table		
MAC	multiple access		
MBM	measurement data-based model		
MIKON	International Conference on Microwaves, Radar & Wireless		
	Communications		
MIMO	multiple input multiple output		
ML	maximum length		
MOSFET	metal oxide semiconductor field-effect transistor		
MRI	magnetic resonance imaging		
MU	mobile unit		
MW	microwave		
NESP	normalized effective signal power		
NLOS	non-line-of-sight		
OFDM	orthogonal frequency division multiplexing		
OOK	on–off keying		
OPM	orthogonal pulse modulation		
PA	power amplifier		
PCB	printed circuit board		
p-cg	p-center of gravity		
PDF	probability density function		
PDP	power delay profile		
PEG	polyethylene glycol		
PG	pulse generator		
PGA	programmable gain amplifier		
PGC	programmable gain control		
PGEN	pulse generator		
PLL	phase locked loop		
PN	pseudo noise		
PPM	pulse position modulation		
PRF	pulse repetition frequency		
PSD	power spectral density		
PVC	polyvinyl chloride		
PVT	process, voltage and temperature		
RAIM	receiver autonomous integrity monitoring		
RCM	range comparison method		
RCS	radar cross-section		

(X	Acronyms		
	RF	radio frequency	
	RFID	radio frequency identification	
	rhc	right-hand circular	
	RMS	root mean square	
	RSS	received signal strength	
	Rx	receiver	
	SAR	synthetic aperture radar	
	SER	symbol error rate	
	SIB	system interconnect bus	
	SISO	single-input single-output	
	SMA	sub-miniature plug type A	
	SNR	signal-to-noise ratio	
	SPI	serial peripheral interface	
	SRD	step recovery diode	
	STR	signal to threshold ratio	
	SVR	support vector regression	
	TD	time domain	
	TDC	time-to-digital converter	
	TDMA	time division multiple access	
	TDoA	time difference of arrival	
	TEM	transversal electric magnetic	
	TH	time-hopping	
	ToA	time of arrival	
	TOF	time of flight	
	TR	transmitted reference	
	TTD	true time delay	
	TWR	two-way ranging	
	Tx	transmitter	
	US	United States	
	UWB	ultra-wideband	
	VCO	voltage controlled oscillator	
	VDOP	vertical dilution of precision	
	VGA	variable gain amplifier	
	VNA	vector network analyzer	
	VSWR	voltage standing wave ratio	
	WBAN	wireless body area networks	
	WLAN	wireless local area network	