Contents

Preface
Foreword
Acknowledgements
List of acronyms

Part I Fundamentals

1 What brought us here?

1.1 Overview
1.2 Towards continuous data processing: the requirements
1.3 Stream processing foundations
1.3.1 Data management technologies
1.3.2 Parallel and distributed systems
1.3.3 Signal processing, statistics, and data mining
1.3.4 Optimization theory
1.4 Stream processing – tying it all together
References

2 Introduction to stream processing

2.1 Overview
2.2 Stream Processing Applications
2.2.1 Network monitoring for cybersecurity
2.2.2 Transportation grid monitoring and optimization
2.2.3 Healthcare and patient monitoring
2.2.4 Discussion
2.3 Information flow processing technologies
2.3.1 Active databases
2.3.2 Continuous queries
2.3.3 Publish–subscribe systems
2.3.4 Complex event processing systems
2.3.5 ETL and SCADA systems
2.4 Stream Processing Systems
2.4.1 Data
2.4.2 Processing
2.4.3 System architecture
Contents

- 2.4.4 Implementations 56
- 2.4.5 Discussion 66
- 2.5 Concluding remarks 68
- 2.6 Exercises 69
- References 70

Part II Application development 75

3 Application development – the basics 77

- 3.1 Overview 77
- 3.2 Characteristics of SPAs 77
- 3.3 Stream processing languages 80
 - 3.3.1 Features of stream processing languages 80
 - 3.3.2 Approaches to stream processing language design 83
- 3.4 Introduction to SPL 86
 - 3.4.1 Language origins 86
 - 3.4.2 A “Hello World” application in SPL 87
- 3.5 Common stream processing operators 92
 - 3.5.1 Stream relational operators 92
 - 3.5.2 Utility operators 96
 - 3.5.3 Edge adapter operators 97
- 3.6 Concluding remarks 101
- 3.7 Programming exercises 101
- References 103

4 Application development – data flow programming 106

- 4.1 Overview 106
- 4.2 Flow composition 106
 - 4.2.1 Static composition 108
 - 4.2.2 Dynamic composition 112
 - 4.2.3 Nested composition 122
- 4.3 Flow manipulation 128
 - 4.3.1 Operator state 128
 - 4.3.2 Selectivity and arity 131
 - 4.3.3 Using parameters 132
 - 4.3.4 Output assignments and output functions 134
 - 4.3.5 Punctuations 136
 - 4.3.6 Windowing 138
- 4.4 Concluding remarks 144
- 4.5 Programming exercises 144
- References 147

5 Large-scale development – modularity, extensibility, and distribution 148

- 5.1 Overview 148
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 Modularity and extensibility</td>
<td>148</td>
</tr>
<tr>
<td>5.2.1 Types</td>
<td>149</td>
</tr>
<tr>
<td>5.2.2 Functions</td>
<td>151</td>
</tr>
<tr>
<td>5.2.3 Primitive operators</td>
<td>153</td>
</tr>
<tr>
<td>5.2.4 Composite and custom operators</td>
<td>161</td>
</tr>
<tr>
<td>5.3 Distributed programming</td>
<td>164</td>
</tr>
<tr>
<td>5.3.1 Logical versus physical flow graphs</td>
<td>164</td>
</tr>
<tr>
<td>5.3.2 Placement</td>
<td>166</td>
</tr>
<tr>
<td>5.3.3 Transport</td>
<td>170</td>
</tr>
<tr>
<td>5.4 Concluding remarks</td>
<td>172</td>
</tr>
<tr>
<td>5.5 Programming exercises</td>
<td>173</td>
</tr>
<tr>
<td>References</td>
<td>176</td>
</tr>
<tr>
<td>6 Visualization and debugging</td>
<td>178</td>
</tr>
<tr>
<td>6.1 Overview</td>
<td>178</td>
</tr>
<tr>
<td>6.2 Visualization</td>
<td>178</td>
</tr>
<tr>
<td>6.2.1 Topology visualization</td>
<td>179</td>
</tr>
<tr>
<td>6.2.2 Metrics visualization</td>
<td>184</td>
</tr>
<tr>
<td>6.2.3 Status visualization</td>
<td>185</td>
</tr>
<tr>
<td>6.2.4 Data visualization</td>
<td>186</td>
</tr>
<tr>
<td>6.3 Debugging</td>
<td>188</td>
</tr>
<tr>
<td>6.3.1 Semantic debugging</td>
<td>189</td>
</tr>
<tr>
<td>6.3.2 User-defined operator debugging</td>
<td>194</td>
</tr>
<tr>
<td>6.3.3 Deployment debugging</td>
<td>194</td>
</tr>
<tr>
<td>6.3.4 Performance debugging</td>
<td>195</td>
</tr>
<tr>
<td>6.4 Concluding remarks</td>
<td>199</td>
</tr>
<tr>
<td>References</td>
<td>200</td>
</tr>
<tr>
<td>Part III System architecture</td>
<td>201</td>
</tr>
<tr>
<td>7 Architecture of a stream processing system</td>
<td>203</td>
</tr>
<tr>
<td>7.1 Overview</td>
<td>203</td>
</tr>
<tr>
<td>7.2 Architectural building blocks</td>
<td>203</td>
</tr>
<tr>
<td>7.2.1 Computational environment</td>
<td>204</td>
</tr>
<tr>
<td>7.2.2 Entities</td>
<td>204</td>
</tr>
<tr>
<td>7.2.3 Services</td>
<td>206</td>
</tr>
<tr>
<td>7.3 Architecture overview</td>
<td>207</td>
</tr>
<tr>
<td>7.3.1 Job management</td>
<td>207</td>
</tr>
<tr>
<td>7.3.2 Resource management</td>
<td>208</td>
</tr>
<tr>
<td>7.3.3 Scheduling</td>
<td>209</td>
</tr>
<tr>
<td>7.3.4 Monitoring</td>
<td>210</td>
</tr>
<tr>
<td>7.3.5 Data transport</td>
<td>211</td>
</tr>
<tr>
<td>7.3.6 Fault tolerance</td>
<td>212</td>
</tr>
<tr>
<td>7.3.7 Logging and error reporting</td>
<td>213</td>
</tr>
</tbody>
</table>
7.3.8 Security and access control
7.3.9 Debugging
7.3.10 Visualization
7.4 Interaction with the system architecture
7.5 Concluding remarks
References

8 InfoSphere Streams architecture
8.1 Overview
8.2 Background and history
8.3 A user’s perspective
8.4 Components
 8.4.1 Runtime instance
 8.4.2 Instance components
 8.4.3 Instance backbone
 8.4.4 Tooling
8.5 Services
 8.5.1 Job management
 8.5.2 Resource management and monitoring
 8.5.3 Scheduling
 8.5.4 Data transport
 8.5.5 Fault tolerance
 8.5.6 Logging, tracing, and error reporting
 8.5.7 Security and access control
 8.5.8 Application development support
 8.5.9 Processing element
 8.5.10 Debugging
 8.5.11 Visualization
8.6 Concluding remarks
References

Part IV Application design and analytics
9 Design principles and patterns for stream processing applications
 9.1 Overview
 9.2 Functional design patterns and principles
 9.2.1 Edge adaptation
 9.2.2 Flow manipulation
 9.2.3 Dynamic adaptation
 9.3 Non-functional principles and design patterns
 9.3.1 Application design and composition
 9.3.2 Parallelization
 9.3.3 Performance optimization
 9.3.4 Fault tolerance
10 Stream analytics: data pre-processing and transformation

10.1 Overview 342
10.2 The mining process 342
10.3 Notation 344
10.4 Descriptive statistics 345
 10.4.1 Illustrative technique: BasicCounting 348
 10.4.2 Advanced reading 353
10.5 Sampling 353
 10.5.1 Illustrative technique: reservoir sampling 356
 10.5.2 Advanced reading 357
10.6 Sketches 358
 10.6.1 Illustrative technique: Count-Min sketch 360
 10.6.2 Advanced reading 363
10.7 Quantization 363
 10.7.1 Illustrative techniques: binary clipping and moment preserving quantization 366
 10.7.2 Advanced reading 369
10.8 Dimensionality reduction 370
 10.8.1 Illustrative technique: SPIRIT 373
 10.8.2 Advanced reading 375
10.9 Transforms 375
 10.9.1 Illustrative technique: the Haar transform 379
 10.9.2 Advanced reading 383
10.10 Concluding remarks 383

References 383

11 Stream analytics: modeling and evaluation

11.1 Overview 388
11.2 Offline modeling and online evaluation 389
11.3 Data stream classification 394
 11.3.1 Illustrative technique: VFDT 398
 11.3.2 Advanced reading 402
11.4 Data stream clustering 403
 11.4.1 Illustrative technique: CluStream microclustering 409
 11.4.2 Advanced reading 413
11.5 Data stream regression 414
 11.5.1 Illustrative technique: linear regression with SGD 417
 11.5.2 Advanced reading 419
11.6 Data stream frequent pattern mining 420
 11.6.1 Illustrative technique: lossy counting 425
 11.6.2 Advanced reading 426

References 426
11.7 Anomaly detection

11.7.1 Illustrative technique: micro-clustering-based anomaly detection 432

11.7.2 Advanced reading 432

11.8 Concluding remarks 433

References 433

Part V Case studies 439

12 Applications 441

12.1 Overview 441

12.2 The Operations Monitoring application 442

12.2.1 Motivation 442

12.2.2 Requirements 443

12.2.3 Design 445

12.2.4 Analytics 451

12.2.5 Fault tolerance 453

12.3 The Patient Monitoring application 454

12.3.1 Motivation 454

12.3.2 Requirements 455

12.3.3 Design 456

12.3.4 Evaluation 463

12.4 The Semiconductor Process Control application 467

12.4.1 Motivation 467

12.4.2 Requirements 469

12.4.3 Design 472

12.4.4 Evaluation 479

12.4.5 User interface 481

12.5 Concluding remarks 482

References 482

Part VI Closing notes 485

13 Conclusion 487

13.1 Book summary 487

13.2 Challenges and open problems 488

13.2.1 Software engineering 488

13.2.2 Integration 491

13.2.3 Scaling up and distributed computing 493

13.2.4 Analytics 495

13.3 Where do we go from here? 496

References 497

Keywords and identifiers index 500

Index 504