

Mining of Massive Datasets

The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be used on even the largest datasets.

It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The tricks of locality-sensitive hashing are explained. This body of knowledge, which deserves to be more widely known, is essential when seeking similar objects in a very large collection without having to compare each pair of objects. Stream processing algorithms for mining data that arrives too fast for exhaustive processing are also explained. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering, each from the point of view that the data is too large to fit in main memory. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce.

Written by two authorities in database and web technologies, this book will be essential for students and practitioners alike.

Mining of Massive Datasets

ANAND RAJARAMAN @WalmartLabs

JEFFREY DAVID ULLMAN Stanford University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107015357

 \odot A. Rajaraman and J. D. Ullman 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-01535-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Prefe	ace	page ix	
1	Data	1		
	1.1	What is Data Mining?	1	
	1.2	Statistical Limits on Data Mining	4	
	1.3	Things Useful to Know	7	
	1.4	Outline of the Book	15	
	1.5	Summary of Chapter 1	16	
	1.6	References for Chapter 1	17	
2	Large-Scale File Systems and Map-Reduce		18	
	2.1	Distributed File Systems	18	
	2.2	Map-Reduce	21	
	2.3	Algorithms Using Map-Reduce	26	
	2.4	Extensions to Map-Reduce	37	
	2.5	Efficiency of Cluster-Computing Algorithms	42	
	2.6	Summary of Chapter 2	49	
	2.7	References for Chapter 2	51	
3	Findi	53		
	3.1	Applications of Near-Neighbor Search	53	
	3.2	Shingling of Documents	57	
	3.3	Similarity-Preserving Summaries of Sets	60	
	3.4	Locality-Sensitive Hashing for Documents	67	
	3.5	Distance Measures	71	
	3.6	The Theory of Locality-Sensitive Functions	77	
	3.7	LSH Families for Other Distance Measures	83	
	3.8	Applications of Locality-Sensitive Hashing	88	
	3.9	Methods for High Degrees of Similarity	96	
	3.10	Summary of Chapter 3	104	
	3.11	References for Chapter 3	106	
4	Mini	ng Data Streams	108	
	4.1	The Stream Data Model	108	

vi Contents

	4.2	Sampling Data in a Stream	112
	4.3	Filtering Streams	115
	4.4	Counting Distinct Elements in a Stream	118
	4.5	Estimating Moments	122
	4.6	Counting Ones in a Window	127
	4.7	Decaying Windows	133
	4.8	Summary of Chapter 4	136
	4.9	References for Chapter 4	137
5	Link	139	
	5.1	PageRank	139
	5.2	Efficient Computation of PageRank	153
	5.3	Topic-Sensitive PageRank	159
	5.4	Link Spam	163
	5.5	Hubs and Authorities	167
	5.6	Summary of Chapter 5	172
	5.7	References for Chapter 5	175
6	Fred	quent Itemsets	176
	6.1	The Market-Basket Model	176
	6.2	Market Baskets and the A-Priori Algorithm	183
	6.3	Handling Larger Datasets in Main Memory	192
	6.4	Limited-Pass Algorithms	199
	6.5	Counting Frequent Items in a Stream	205
	6.6	Summary of Chapter 6	209
	6.7	References for Chapter 6	211
7	Clus	213	
•	7.1	Introduction to Clustering Techniques	213
	7.2	Hierarchical Clustering	217
	7.3	K-means Algorithms	226
	7.4	The CURE Algorithm	234
	7.5	Clustering in Non-Euclidean Spaces	237
	7.6	Clustering for Streams and Parallelism	241
	7.7	Summary of Chapter 7	247
	7.8	References for Chapter 7	250
8	Δdv	ertising on the Web	252
•	8.1	Issues in On-Line Advertising	252
	8.2	On-Line Algorithms	255
	8.3	The Matching Problem	258
	8.4	The Adwords Problem	261
	8.5	Adwords Implementation	270
	8.6	Summary of Chapter 8	273
		J T T T T T	

			Contents	vii
	8.7	References for Chapter 8		275
9	Recommendation Systems			277
	9.1	A Model for Recommendation Systems		277
	9.2	Content-Based Recommendations		281
	9.3	Collaborative Filtering		291
	9.4	Dimensionality Reduction		297
	9.5	The NetFlix Challenge		305
	9.6	Summary of Chapter 9		306
	9.7	References for Chapter 9		308
	Inde	-		310

Preface

This book evolved from material developed over several years by Anand Rajaraman and Jeff Ullman for a one-quarter course at Stanford. The course CS345A, titled "Web Mining," was designed as an advanced graduate course, although it has become accessible and interesting to advanced undergraduates.

What the Book Is About

At the highest level of description, this book is about data mining. However, it focuses on data mining of very large amounts of data, that is, data so large it does not fit in main memory. Because of the emphasis on size, many of our examples are about the Web or data derived from the Web. Further, the book takes an algorithmic point of view: data mining is about applying algorithms to data, rather than using data to "train" a machine-learning engine of some sort. The principal topics covered are:

- (1) Distributed file systems and map-reduce as a tool for creating parallel algorithms that succeed on very large amounts of data.
- (2) Similarity search, including the key techniques of minhashing and locality-sensitive hashing.
- (3) Data-stream processing and specialized algorithms for dealing with data that arrives so fast it must be processed immediately or lost.
- (4) The technology of search engines, including Google's PageRank, link-spam detection, and the hubs-and-authorities approach.
- (5) Frequent-itemset mining, including association rules, market-baskets, the A-Priori Algorithm and its improvements.
- (6) Algorithms for clustering very large, high-dimensional datasets.
- (7) Two key problems for Web applications: managing advertising and recommendation systems.

< Preface

Prerequisites

CS345A, although its number indicates an advanced graduate course, has been found accessible by advanced undergraduates and beginning masters students. In the future, it is likely that the course will be given a mezzanine-level number. The prerequisites for CS345A are:

- (1) The first course in database systems, covering application programming in SQL and other database-related languages such as XQuery.
- (2) A sophomore-level course in data structures, algorithms, and discrete math.
- (3) A sophomore-level course in software systems, software engineering, and programming languages.

Exercises

The book contains extensive exercises, with some for almost every section. We indicate harder exercises or parts of exercises with an exclamation point. The hardest exercises have a double exclamation point.

Support on the Web

You can find materials from past offerings of CS345A at:

http://infolab.stanford.edu/~ullman/mining/mining.html

There, you will find slides, homework assignments, project requirements, and in some cases, exams.

Acknowledgements

Cover art is by Scott Ullman. We would like to thank Foto Afrati and Arun Marathe for critical readings of the draft of this manuscript. Errors were also reported by Leland Chen, Shrey Gupta, Xie Ke, Haewoon Kwak, Brad Penoff, Philips Kokoh Prasetyo, Mark Storus, Tim Triche Jr., and Roshan Sumbaly. The remaining errors are ours, of course.

A. R. J. D. U. Palo Alto, CA June, 2011