Contents

List of Figures xi
List of Tables xiii
Preface to the Second Edition xv
Preface to the First Edition xvii

Part I Fundamentals of Bayesian Inference

1 Introduction 3
 1.1 Econometrics 3
 1.2 Overview of the Book 4
 1.3 Historical Note and Further Reading 5

2 Basic Concepts of Probability and Inference 7
 2.1 Probability 7
 2.1.1 Frequentist Probabilities 8
 2.1.2 Subjective Probabilities 9
 2.2 Prior, Likelihood, and Posterior 12
 2.3 Summary 18
 2.4 Further Reading and References 19
 2.5 Exercises 19

3 Posterior Distributions and Inference 21
 3.1 Properties of Posterior Distributions 21
 3.1.1 The Likelihood Function 21
 3.1.2 Vectors of Parameters 23
 3.1.3 Bayesian Updating 25
 3.1.4 Large Samples 27
 3.1.5 Identification 29
3.2 Inference

3.2.1 Point Estimates
3.2.2 Interval Estimates
3.2.3 Prediction
3.2.4 Model Comparison

3.3 Summary

3.4 Further Reading and References

3.5 Exercises

4 Prior Distributions

4.1 Normal Linear Regression Model
4.2 Proper and Improper Priors
4.3 Conjugate Priors
4.4 Subject-Matter Considerations
4.5 Exchangeability
4.6 Hierarchical Models
4.7 Training Sample Priors
4.8 Sensitivity and Robustness
4.9 Conditionally Conjugate Priors
4.10 A Look Ahead
4.11 Further Reading and References
4.12 Exercises

Part II Simulation

5 Classical Simulation

5.1 Probability Integral Transformation Method
5.2 Method of Composition
5.3 Accept-Reject Algorithm
5.4 Importance Sampling
5.5 Multivariate Simulation
5.6 Using Simulated Output
5.7 Further Reading and References
5.8 Exercises

6 Basics of Markov Chains

6.1 Finite State Spaces
6.2 Countable State Spaces
6.3 Continuous State Spaces
6.4 Further Reading and References
6.5 Exercises
Contents

7 **Simulation by MCMC Methods**

7.1 Gibbs Algorithm

7.1.1 Basic Algorithm

7.1.2 Calculation of Marginal Likelihood

7.2 Metropolis-Hastings Algorithm

7.2.1 Basic Algorithm

7.2.2 Calculation of Marginal Likelihood

7.3 Numerical Standard Errors and Convergence

7.4 Further Reading and References

7.5 Exercises

8 **Linear Regression and Extensions**

8.1 Continuous Dependent Variables

8.1.1 Normally Distributed Errors

8.1.2 Student-\(t\) Distributed Errors

8.2 Limited Dependent Variables

8.2.1 Tobit Model for Censored Data

8.2.2 Binary Probit Model

8.2.3 Binary Logit Model

8.2.4 Ordinal Probit Model

8.3 Latent Variable Models

8.3.1 Item Response Model

8.3.2 Factor Analysis Models

8.4 Further Reading and References

8.5 Exercises

9 **Semiparametric Regression**

9.1 Flexible Forms for the Conditional Mean Function

9.1.1 LS Basis

9.1.2 Identification

9.1.3 Prior Distributions

9.1.4 MCMC Algorithm for the Cubic Spline Approximation

9.1.5 Marginal Likelihood Calculation

9.1.6 Examples

9.2 Flexible Error Distributions

9.2.1 Introduction to Dirichlet Process Mixtures

9.2.2 Inference for Dirichlet Process Mixtures

9.2.3 Examples
9.3 Further Reading and References

167

9.4 Exercises

168

10 Multivariate Responses

169
10.1 SUR Model 169
10.2 Multivariate Probit Model 174
10.3 Panel Data 178
10.4 Further Reading and References 184
10.5 Exercises 186

11 Time Series

187
11.1 Autoregressive Models 187
11.2 Regime-Switching Models 193
11.3 Time-Varying Parameters 196
11.4 Time Series Properties of Models for Panel Data 199
11.5 Time-Varying Variances 201
11.5.1 ARCH–GARCH Models 201
11.5.2 Stochastic Volatility Models 202
11.6 Further Reading and References 204
11.7 Exercises 205

12 Endogenous Covariates and Sample Selection

206
12.1 Treatment Models 206
12.2 Unobserved Covariates 212
12.3 Incidental Truncation 215
12.4 Further Reading and References 221
12.5 Exercises 222

A Probability Distributions and Matrix Theorems

223
A.1 Probability Distributions 223
A.1.1 Bernoulli 223
A.1.2 Binomial 223
A.1.3 Negative Binomial 224
A.1.4 Multinomial 224
A.1.5 Poisson 224
A.1.6 Uniform 225
A.1.7 Gamma 225
A.1.8 Inverted or Inverse Gamma 225
A.1.9 Beta 226
A.1.10 Pareto 227
A.1.11 Dirichlet 227
A.1.12 Normal or Gaussian 227
A.1.13 Truncated Normal 227
A.1.14 Multivariate Normal or Gaussian 228
A.1.15 Matricvariate Normal or Matrix Normal 229
A.1.16 Univariate Student-t 230
A.1.17 Multivariate t 230
A.1.18 Wishart 231
A.1.19 Inverted or Inverse Wishart 231
A.1.20 Multiplication Rule of Probability 232
A.2 Matrix Theorems 232

B Computer Programs for MCMC Calculations 234

Bibliography 237
Author Index 245
Subject Index 247