Helmholtz and the Modern Listener

The musical writings of scientist Hermann von Helmholtz (1821–94) have long been considered epoch-making in the histories of both science and aesthetics. Widely regarded as having promised an authoritative scientific foundation for harmonic practice, Helmholtz can also be read as posing a series of persistent challenges to our understanding of the musical listener. Helmholtz was at the forefront of sweeping changes in discourse about human perception. His interrogation of the physiology of hearing threw notions of the self-possessed listener into doubt and conjured a sense of vulnerability to mechanistic forces and fragmentary experience. Yet this new image of the listener was simultaneously caught up in wider projects of discipline, education, and liberal reform. Reading Helmholtz in conjunction with a range of his intellectual sources and heirs, from Goethe to Max Weber to George Bernard Shaw, Steege explores the significance of Helmholtz’s listener as an emblem of a broader cultural modernity.

Benjamin Steege is Assistant Professor of Music at Columbia University. He specializes in the history of music theory in the nineteenth and twentieth centuries, with particular emphasis on musical and scientific modernisms, the history of psychology, and the history of listening. His work has appeared in publications including Current Musicology, Journal of the American Musicological Society and Journal of Music Theory.
Helmholtz and the Modern Listener

BENJAMIN STEEGE
Contents

List of illustrations [page vii]
Acknowledgments [ix]
Chronology [xi]

Introduction [1]
Henry Higgins, Professor of Phonetics [1]
Helmholtz as modern [7]

1 Popular sensations [16]
The popular impulse [19]
Renovating musical knowledge [25]
Sensation, interest, value [33]
The wider campaign [37]

2 Refunctioning the ear [43]
Hearing and erring [46]
The ear and its doubles [54]
Das körperliche Ohr (sensation) [58]
Das geistige Ohr (signification) [73]

3 The problem of attention [80]
Temporalities of attention [83]
The third ear [96]
Fixity and difference [105]
Attention and apperception [114]

4 Music theory as liberal progressive history [123]
The theory of “affinity” [130]
The history of “affinity” [146]
Between choice and necessity [160]
The double choice [171]

5 Voices of reform [178]
Refunctioning the voice [179]
Helmholtz in England: the Tonic Sol-fa Society [193]
“Natural” intonation in theory and practice [206]
Contents

Epilogue: Helmholtz and modernism [215]
The modernity of sensation [215]
Helmholtzian Wagnerism? [224]
Schoenberg's Expressionist Empfindungswelt [234]
Max Weber and the modern listener [241]
Conclusion [250]

Bibliography [252]
Index [277]
Illustrations

Figure 1 Siren like that used by Baron Charles Cagniard de la Tour. From Helmholtz, *Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik*, 4th edn. (Braunschweig: Vieweg und Söhn, 1877), p. 23. [page 47]

Figure 2 Rotating disk from a siren like that used by August Seebeck. From Helmholtz, *Die Lehre von den Tonempfindungen*, p. 21. [48]

Figure 3 Glass bottle with pig skin membrane; an early model of the “Helmholtz resonator.” From Helmholtz, *Die Lehre von den Tonempfindungen*, p. 71. [61]

Figure 4 A typical spherical resonator. From Helmholtz, *Die Lehre von den Tonempfindungen*, p. 73. [62]

Figure 5 Part of the middle section of the cochlea. From Helmholtz, *Tonempfindungen*, p. 230. [65]

Figure 6 Instruments for hearing. Harvard Psychology Department, 1893. From Hugo Münsterberg, *Psychological Laboratory of Harvard University* (Cambridge, MA: Harvard University Press, 1893), Plate 4, after p. 8. [99]

Figure 7 Exercises in aural attention to be executed with a physharmonica. From Mach, *Einleitung in die Helmholtz'sche Musiktheorie, populär für Musiker dargestellt* (1866), p. 23. [106]

Figure 8 Tonal affinity in the second degree. [132]

Figure 9 Helmholtz’s universal background scale. [153]

Figure 10 Transcription of spoken phrases, exemplifying background scale. From Helmholtz, *Tonempfindungen*, p. 392. [153]

Figure 11 Helmholtz’s vowel synthesizer. From Helmholtz, *Die Lehre von den Tonempfindungen*, p. 631. [182]

Figure 12 Helmholtz’s vowel synthesizer. From Franz Joseph Pisko, *Die neueren Apparate der Akustik. Für Freunde der
List of illustrations

Naturwissenschaft und der Tonkunst (Vienna: Carl Gerhold’s Sohn, 1865), p. 22. [185]

Figure 14 The vocal apparatus while singing, as seen in the mirror of a laryngoscope. From Emma Seiler, *The Voice in Singing* (Philadelphia: J. B. Lippincott, 1868), p. 53. [188]

Figure 15 Ranges of the male and female voices. From Seiler, *The Voice in Singing*, p. 68. [189]

Figure 16 Johannes Müller’s apparatus for producing vocal tones using the larynx of a cadaver. From Müller, *Über die Compensation der physischen Kräfte am menschlichen Stimmorgan: Mit Bemerkungen über die Stimme der Säugethiere, Vögel und Amphibien* (Berlin: A. Hirschwald, 1839), Table 2. [191]

Figure 17 Side view of the oral cavity pronouncing the vowel U. From Max Müller, *Lectures on the Science of Language*, 2nd series (London: Longman, Green, Longman, Roberts & Green, 1864), p. 119. [194]

Figure 19 Exercises for learning the “mental effects” of tones of the major tonic triad, in Curwen’s Sol-fa notation. From Curwen, *The Standard Course*, p. 4. [205]

Figure 20 Tuning pattern for a two-manual harmonium in just intonation. From Helmholtz, *Tonempfindungen*, p. 512. [208]
Acknowledgments

Work on this book has been informed by countless individuals over the years. Alex Rehding and Chris Hasty have been acquainted with the project since its inception as a dissertation at Harvard University, and I owe them a special debt of gratitude for their careful and perceptive readings as well as continued mentorship over the years. Others who have read part or all of the manuscript at various stages include Veit Erlmann, Kay Kaufman Shelemay, and the anonymous referees, each of whom I thank for encouragement and constructive critique. I would also like to acknowledge the value of exchanges, both brief and extended, with Lee Blasius, Bob Brain, Martin Brody, David Cahan, David Cohen, Lorraine Daston, Ryan Dohoney, Sally Fuller, Erwin and Elfrieda Hiebert, Myles Jackson, Julia Kursell, Judy Lochhead, Andreas Mayer, Jairo Moreno, Severine Neff, Tobias Plebuch, Phil Rupprecht, Henning Schmidgen, Hillel Schwarz, Jan Philipp Sprick, and Jane Sugarman, all of whose words regarding Helmholtz and listening at some point over the past years have made an impact on the form of this study. My colleagues at Stony Brook University provided a nurturing environment for my project, and I am especially grateful to them for having shouldered a heavier load during the leave year I dedicated to writing and revising. Most recently, Victoria Cooper, Jodie Hodgson, Rebecca Taylor, and David Watson have provided fantastic editorial help shepherding the book into its final form.

Material support came in the form of a ten-month research fellowship from the Alexander von Humboldt Foundation. I am grateful to Hermann Danuser for having sponsored the fellowship. At earlier stages, writing was additionally supported by an Alvin H. Johnson AMS 50 Dissertation Fellowship from the American Musicological Society, as well as a research grant from the Deutscher Akademischer Austausch Dienst (DAAD), and a Krupp Foundation Fellowship from the Minda de Gunzburg Center for European Studies at Harvard University. I would also like to thank the American Musicological Society for a generous subvention from the AMS 75 PAYS Endowment, funded in part by the National Endowment of the Humanities and the Andrew W. Mellon Foundation.
Acknowledgments

Finally, none of this work would have been possible without the benefit of family, both old and new. I am grateful especially to my parents for their unflagging enthusiasm and sympathetic ears, and for offering a place of respite from academic stress. My wife, Brigid Cohen, has been an incomparable interlocutor since we first met, and without the generous resources of her acuity and imagination my work would be much poorer indeed. This book is dedicated to her.
Chronology

1821 Hermann von Helmholtz born in Potsdam (Prussia)
1843 Works as a military surgeon for Potsdam regiment of the Prussian army
1845 Joins newly founded Physikalische Gesellschaft zu Berlin (Physical Society of Berlin), a group of young reform-minded scientists, many studying with physiologist Johannes Müller
1847 Ueber die Erhaltung der Kraft (On the Conservation of Force), an account of the mechanical equivalent of heat, part of the first law of thermodynamics, helping to establish the conceptual basis of modern experimental physiology
1849 Appointed Professor of Physiology, University of Königsberg (Prussia)
1853 Moritz Hauptmann, Die Natur der Harmonie und der Metrik (The Nature of Harmony and Meter)
1856 Appointed Professor of Physiology and Anatomy, University of Bonn (Prussia). “Ueber Combinationstöne” (“On Combination Tones”), Handbuch der physiologischen Optik (Handbook of Physiological Optics), vol. I, the model for Helmholtz’s later, parallel work in physiological acoustics
1857 “Ueber die physiologischen Ursachen der musikalischen Harmonie” (“On the Physiological Causes of Harmony in Music”), an early statement of views on the relation between acoustics and music, written for a popular audience
1858 “Ueber die Vocale” (“On Vowels”)
1859 Appointed Professor of Physiology, University of Heidelberg (Baden). “Ueber die Klangfarbe der Vocale” (“On the Timbre of Vowels”)
1860 “Ueber Klangfarben” (“On Timbres”)
1861 “Ueber musikalische Temperatur” (“On Musical Temperament”)
1862 “Über die arabisch-persische Tonleiter” (“On Arabic-Persian Scales”)

Chronology

1863 Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik
1864 Meets Alexander J. Ellis during a visit to London
1866 Arthur von Oettingen, Harmoniesystem in dualer Entwicklung (System of Harmony, Developed Dualistically), questions the privileging of the major triad in Helmholtz and suggests an alternative, in which the tonic overtones are balanced by analogous “phonic” undertones generating the minor triad
1868 Handbuch der physiologischen Optik, vol. III
1870 Die Lehre von den Tonempfindungen, 3rd (revised) edition
1871 Unification of German nation with Berlin as capital. Appointed Professor of Physics, University of Berlin
1875 On the Sensations of Tone as a Basis for the Theory of Music, translated by Alexander J. Ellis from Die Lehre von den Tonempfindungen, 3rd edition
1877 Die Lehre von den Tonempfindungen, 4th (revised) edition
1880 (circa) Socializes with Richard and Cosima Wagner in Berlin salons
1882 Hugo Riemann, “Die Natur der Harmonik” (“The Nature of Harmony”), places the development of physical and physiological acoustics in historical perspective, to be superseded by psychological perspectives on harmony
1883 Carl Stumpf, Tonpsychologie, vol. I
1887 Appointed president of newly founded Physikalisch-Technische Reichsanstalt (Imperial Physico-Technical Institute), Berlin
1890 Carl Stumpf, Tonpsychologie, vol. II, proposes a psychological theory of consonance as “fusion” (Verschmelzung) in distinction from Helmholtz’s physiological theory of consonance as the absence of beats
1894 Dies in Berlin