Contents

Preface page xv

Reference tables xvii
Table A Counting and combinatorics formulae xvii
Table B Useful integrals, expansions, and approximations xvii
Table C Extensive thermodynamic potentials xviii
Table D Intensive per-particle thermodynamic potentials for single-component systems xviii
Table E Thermodynamic calculus manipulations xix
Table F Measurable quantities xx
Table G Common single-component statistical-mechanical ensembles xxi
Table H Fundamental physical constants xxii

1 Introduction and guide for this text 1

2 Equilibrium and entropy 6
2.1 What is equilibrium? 6
2.2 Classical thermodynamics 7
2.3 Statistical mechanics 11
2.4 Comparison of classical thermodynamics and statistical mechanics 14
2.5 Combinatorial approaches to counting 15
Problems 18

3 Energy and how the microscopic world works 21
3.1 Quantum theory 21
3.2 The classical picture 25
3.3 Classical microstates illustrated with the ideal gas 29
3.4 Ranges of microscopic interactions and scaling with system size 32
3.5 From microscopic to macroscopic 34
3.6 Simple and lattice molecular models 37
3.7 A simple and widely relevant example: the two-state system 38
Problems 41

4 Entropy and how the macroscopic world works 50
4.1 Microstate probabilities 50
4.2 The principle of equal a priori probabilities 51
4.3 Ensemble averages and time averages in isolated systems 54
4.4 Thermal equilibrium upon energy exchange 58
4.5 General forms for equilibrium and the principle of maximum entropy 65
4.6 The second law and internal constraints 69
4.7 Equivalence with the energy-minimum principle 70
4.8 Ensemble averages and Liouville’s theorem in classical systems 72
Problems 75

5 The fundamental equation 82
5.1 Equilibrium and derivatives of the entropy 82
5.2 Differential and integrated versions of the fundamental equations 83
5.3 Intensive forms and state functions 85
Problems 91

6 The first law and reversibility 93
6.1 The first law for processes in closed systems 93
6.2 The physical interpretation of work 95
6.3 A classic example involving work and heat 97
6.4 Special processes and relationships to the fundamental equation 98
6.5 Baths as idealized environments 101
6.6 Types of processes and implications from the second law 101
6.7 Heat engines 105
6.8 Thermodynamics of open, steady-flow systems 107
Problems 114

7 Legendre transforms and other potentials 123
7.1 New thermodynamic potentials from baths 123
7.2 Constant-temperature coupling to an energy bath 123
7.3 Complete thermodynamic information and natural variables 126
7.4 Legendre transforms: mathematical convention 128
7.5 Legendre transforms: thermodynamic convention 130
7.6 The Gibbs free energy 132
7.7 Physical rationale for Legendre transforms 133
7.8 Extremum principles with internal constraints 134
7.9 The enthalpy and other potentials 136
7.10 Integrated and derivative relations 137
7.11 Multicomponent and intensive versions 141
7.12 Summary and look ahead 142
Problems 143

8 Maxwell relations and measurable properties 149
8.1 Maxwell relations 149
8.2 Measurable quantities 151
8.3 General considerations for calculus manipulations 154
Problems 156

9 Gases 161
9.1 Microstates in monatomic ideal gases 161
9.2 Thermodynamic properties of ideal gases 165
Contents

9.3 Ideal gas mixtures 167
9.4 Nonideal or “imperfect” gases 170
9.5 Nonideal gas mixtures 171
Problems 172

10 Phase equilibrium 176
10.1 Conditions for phase equilibrium 176
10.2 Implications for phase diagrams 181
10.3 Other thermodynamic behaviors at a phase transition 184
10.4 Types of phase equilibrium 187
10.5 Microscopic view of phase equilibrium 188
10.6 Order parameters and general features of phase equilibrium 194
Problems 195

11 Stability 201
11.1 Metastability 201
11.2 Common tangent line perspective on phase equilibrium 202
11.3 Limits of metastability 205
11.4 Generalized stability criteria 209
Problems 212

12 Solutions: fundamentals 217
12.1 Ideal solutions 217
12.2 Ideal vapor–liquid equilibrium and Raoult’s law 220
12.3 Boiling-point elevation 221
12.4 Freezing-point depression 224
12.5 Osmotic pressure 224
12.6 Binary mixing with interactions 227
12.7 Nonideal solutions in general 230
12.8 The Gibbs–Duhem relation 231
12.9 Partial molar quantities 233
Problems 236

13 Solutions: advanced and special cases 246
13.1 Phenomenology of multicomponent vapor–liquid equilibrium 246
13.2 Models of multicomponent vapor–liquid equilibrium 248
13.3 Bubble- and dew-point calculations at constant pressure 250
13.4 Flash calculations at constant pressure and temperature 252
13.5 Relative volatility formulation 254
13.6 Nonideal mixtures 255
13.7 Constraints along mixture vapor–liquid phase boundaries 258
13.8 Phase equilibrium in polymer solutions 260
13.9 Strong electrolyte solutions 266
Problems 274
14 Solids 280
14.1 General properties of solids 280
14.2 Solid-liquid equilibrium in binary mixtures 281
14.3 Solid-liquid equilibrium in multicomponent solutions 287
14.4 A microscopic view of perfect crystals 290
14.5 The Einstein model of perfect crystals 292
14.6 The Debye model of perfect crystals 296
Problems 300

15 The third law 305
15.1 Absolute entropies and absolute zero 305
15.2 Finite entropies and heat capacities at absolute zero 309
15.3 Entropy differences at absolute zero 310
15.4 Attainability of absolute zero 312
Problems 315

16 The canonical partition function 319
16.1 A review of basic statistical-mechanical concepts 319
16.2 Microscopic equilibrium in isolated systems 320
16.3 Microscopic equilibrium at constant temperature 321
16.4 Microstates and degrees of freedom 328
16.5 The canonical partition function for independent molecules 332
Problems 335

17 Fluctuations 343
17.1 Distributions in the canonical ensemble 343
17.2 The canonical distribution of energies 345
17.3 Magnitude of energy fluctuations 350
Problems 353

18 Statistical mechanics of classical systems 357
18.1 The classical canonical partition function 357
18.2 Microstate probabilities for continuous degrees of freedom 361
18.3 The Maxwell-Boltzmann distribution 368
18.4 The pressure in the canonical ensemble 372
18.5 The classical microcanonical partition function 375
Problems 376

19 Other ensembles 387
19.1 The isothermal-isobaric ensemble 387
19.2 The grand canonical ensemble 392
19.3 Generalities and the Gibbs entropy formula 396
Problems 397
Contents

20 Reaction equilibrium

20.1 A review of basic reaction concepts 404
20.2 Reaction equilibrium at the macroscopic level 405
20.3 Reactions involving ideal gases 407
20.4 Reactions involving ideal solutions 409
20.5 Temperature and pressure dependence of K_{eq} 410
20.6 Reaction equilibrium at the microscopic level 412
20.7 Fluctuations 414
Problems 417

21 Reaction coordinates and rates

21.1 Kinetics from statistical thermodynamics 425
21.2 Macroscopic considerations for reaction rates 426
21.3 Microscopic origins of rate coefficients 428
21.4 General considerations for rates of rare-event molecular processes 438
Problems 441

22 Molecular simulation methods

22.1 Basic elements of classical simulation models 445
22.2 Molecular-dynamics simulation methods 450
22.3 Computing properties 453
22.4 Simulations of bulk phases 457
22.5 Monte Carlo simulation methods 459
Problems 464

Index 470