Index

ab initio methods 444
absolute activity 393
absolute zero
attainability 312, 317
crystals 294, 299
entropies 305
equation of state 315
gases 316
heat capacities 309, 316
metastable phases 310
molecular motion 315
phase boundaries 311
acceptance criterion 460–461
activated complex 429
activation energy 425, 427
activity coefficient
 convention 230, 233
 definition 230
 electrolyte 273, 275
 measurement 235, 239
 relations 240
vapor–liquid equilibrium 255
addition-of-variable rule 154
adsorption 17, 342, 379, 401, 419
amorphous materials 52, 280, 310
angle potential 465
Antoine equation 183, 198, 249
Arrhenius relation 427
averages
 ensemble 54, 56, 343
 simulation 454, 457, 460
 statistical errors in 464
time 54–55
azeotrope 241, 258, 279
balance equation 462
baths 101, 123, 321
binodal 207
binomial theorem 16
blood flow 121
boiling 145
boiling point 90–91, 182, 246
boiling-point elevation 221, 244
Boltzmann’s constant 12, 58
Boltzmann’s equation 12, 306, 319
Boltzmann factor
 electrolytes 268
 ensembles 324, 354, 388
 bonded interactions, see interactions
 boundaries, see interfaces and surfaces
 Bragg-Williams approach 339
 bubble point
 calculation 250
 definition 246
 bubbles 147
calculus manipulations 155
canonical ensemble
 classical systems 357
 definition 324
 partition function 324, 346
 probabilities 323, 345, 354–355
 independent molecules 333, 364
 simulation 460
capacitors 277, 384
Carnot cycle 120
catalysts 419, 442–443
cells 47, 78–79, 242
chemical potential
 convention 219, 233
 electrolytes 275
 excess quantities 173
 gradients 158
 interpretation 143
 mixture 235
 reaction equilibrium 406
 simulation 385
 solids 280
 standard quantities 166
chemical reaction equilibrium, see reaction equilibrium
chi parameter, see exchange parameter
cholesterol 304
Clapeyron equation 182, 258, 311
classical force field, see potential energy function
classical systems
 definition 25
 density of states 55, 305
 entropy 317
classical thermodynamics 7
Clausius–Clapeyron equation 183
course-grained model 444, 448
colligative property 223
combinatorial counting 15, 41
common-tangent line 203, 265
compressibility, isentropic 153
compressibility, isothermal
thermodynamics 151, 158
mixtures 158
sign 211
statistical mechanics 399
compressibility factor 171
conjugate variables 87, 143
conservative force 114
constant temperature
statistical mechanics 348, 370
states 123
continuity equation 73
cooperative reaction 422
core overlap 453
critical micelle concentration 423
critical point 192, 195, 208, 352
Crystals
classical crystals 301
Debye model 296, 314
defects 48
definition 280
Einstein model 292, 354
heat capacity 294, 299, 301
melting 383
mixtures 281
models 88, 290
orientational degeneracies 307
vapor pressure 301
cutoff distance 458, 466
cyclic process 114
de Broglie wavelength 166
Debye–Hückel model 266, 277
Debye length 268, 279, 465
Debye model of crystals, see crystals: Debye model
degrees of freedom
continuous 361
internal 70
independent 329, 364
microscopic 18, 35, 328, 355
thermodynamic 178
thermodynamic vapor–liquid 249
density of states
classical behavior 375
interpretation 12–13
detailed-balance equation 462
dew point
calculation 250
definition 246
diagram
Mollier 196
P–H 174
P–T 181
P–V 116
P–x–y 274
S–T 313
T–x 181
T–x–y 247
x–y 255
dielectric constant 266
dimerization 335
dipole 384–385
Dirac delta function 364
distinguishable particles 333
drops 144, 197, 403
DNA 47, 119, 356
Einstein, Albert 1
Einstein model of crystals, see crystals: Einstein model
Eyring equation 428
elastic band 119, 400
elastic modulus 280
electrolyte solutions 266, 274
electrostatic interactions, see interactions: electrostatic
electrostatic potential 266
energy drift 452
energy-minimum principle 70
energy landscape 297, 428
energy of mixing 228
energy spectrum 24
ensemble
canonical 324
grand canonical 392
interpretation 36, 320
isothermal-isobaric 387
Liouville’s theorem 72
microcanonical 321
semi-grand 398
enthalpy
definition 91, 136
fundamental form 136
entropy
absolute 173, 305, 376
classical 317
entropy (cont.)
 concavity 9, 42, 353
definition 8, 99
excess 173, 378, 381
extensivity 9, 41, 58
Gibbs' formula 336, 396, 400
interpretation 8
mixing 45, 75, 169, 217, 260
partial derivatives 9
polymer 263, 276
residual 308, 316–317
equal a priori probabilities, see principle of equal a priori probabilities
equilibration period 453
equilibrium
 approach to 68, 76, 418–419
 chemical 67, 82
definition 6
 mechanical 67, 82
 thermal 58, 63, 82
equilibrium constant
 definition 404, 408–409
 molecular interpretation 414
 relation to rate coefficients 426
temperature and pressure dependence 410
equilibrium states 10, 36, 87
equipartition theorem 455
ergodicity 53
Euler's theorem 84, 138
eutectic 286, 300–301
evaporation 237
excess properties 173, 231, 237, 241, 378, 380–381
exchange parameter 228, 241, 264
exponential expansion 16
extensive properties 84, 91
extensivity 12, 138
extent of reaction 405
external and internal forces 95
first law of thermodynamics
 closed systems 93, 316
 open systems 107
flash calculation 252
Flory–Huggins theory 260, 276
flow streams 107
fluctuations
 canonical 343
 stability 399
 correlated 399, 402
definition 363
density 398
energy 64–65, 350, 355, 389, 394
enthalpy 398
heat bath 142
interpretation 36, 343–344
particle number 394, 399
reaction equilibrium 414
volume 389, 398–399
fluid jets 120–121
force field, see potential energy function
free charge density 267
freezing-point depression 224, 281, 302
fugacity
 coefficient 170
definition 170
vapor–liquid equilibrium 255
fundamental equation
 energy version 83
 entropy version 10, 83
 integrated forms 84
 intensive forms 87
 other work terms 100
 statistical mechanics 343
Galilean invariance 378
gas constant 12
Gibbs adsorption isotherm 146
Gibbs–Duhem relation 231, 240, 259
Gibbs free energy
 binary mixture 144, 237
definition 132
 excess 231, 237, 241
 fundamental form 133
 reaction equilibrium 405, 418
 statistical mechanics 390
Gibbs’ phase rule 180, 232, 417
grand canonical ensemble
classical systems 394
definition 392
partition function 393
probabilities 393–394, 399
simulation 464
glasses, see amorphous materials
ground state 306, 337
Hamiltonian
 classical 26, 54
 quantum 23
 virial theorem 382
hard spheres 380, 401
harmonic potential 292, 300, 364, 378, 433
heat 93
heat capacity	indistinguishability 31, 164, 333, 337, 377
definition 151	infinite-state model 77, 337, 355
measurable 156	integrator 452
microscopic interpretation 351, 354, 378, 398	intensive properties 84-85, 91
relation 152	interactions
simulation 465	bonded 27
heat of solution 245, 304	electrostatic 27, 266, 377, 458, 465
Helmholtz free energy	long-ranged 458
definition 125	repulsive 28, 32
fundamental form 127	separable 330
solids 146	short-ranged 32
statistical mechanics 326, 355	van der Waals 27
Heney's law 239, 242, 386	internal constraint
Hessain matrix 297	definition 69
history independence 6	use in second law 70
H-theorem 52	use in energy and free energy minimization 70, 134
hydrodynamics 369	interfaces and surfaces
hydrogen orbitals 23	confining 402
ice skating 302	energies of 32
ideal gas	interactions with particles 46, 379
chemical potential 166	Gibbs' treatment 145
classical diatomic 366, 377	phase equilibrium 192, 303
confined 402	solid phases 303
dipolar 384	statistical mechanics 403
equation of state 11, 29, 165	thermodynamics 96, 118, 145, 147, 197, 303
energy spectrum 163	thin films 214
entropy 11, 116, 165	inexact differentials 94
Gibbs free energy 166	internal energy 83
heat capacity 165	ion atmosphere 267, 271, 277
Helmholtz free energy 126, 166	ionic strength 269
mixtures 167	Ising model 188, 315, 330, 338-339, 355
molecular properties 161	isomerization 80
partition functions 337, 361, 392, 395	isothermal-isobaric ensemble
polyatomic 167	classical systems 390
process calculations 115	definition 387
properties 157	partition function 388
under gravity 379, 385	probabilities 388-389, 398
ideal solution	simulation 463
chemical potential 218	isotopes 307
definition 217	Joule experiment 114
Gibbs free energy 218	Joule-Thompson process 159
image particles 457	Kauzmann point 198
implicit solvation model 449	kinetic energy 370, 379
importance sampling 461	lattice gas 188
incompressible liquid 158	lattice models 37
independent molecules 332, 336, 354, 360, 378, 412	Lagrangian 43
Langmuir adsorption isotherm 342	
Laplace transform 346
latent heat
definition 91, 151, 185
temperature dependence 196
Le Chatelier’s effect 419
Legendre transforms
mathematical definition 128
physical rationale 133
statistical mechanics 326, 346, 390, 396
thermodynamic definition 130
Lennard-Jones potential 28, 46, 47, 445, 466–469
Levi–Randall rule 171, 174, 418
Lindemann melting criterion 383
Liouville’s theorem 72
liquid crystals 338–339
macroscopic properties 6–7
macrostate
definition 36, 50
probabilities 62, 64, 345, 378, 389, 394
magnetic materials
fluctuations 400
spin models 19, 315, 330, 339
thermodynamics 160
Margules model 243
Markov chain 461
maximum-term method 64, 142, 347, 390
Maxwell–Boltzmann distribution 368, 377, 379, 437, 453
Maxwell relations 149
mean-field approximation 189, 227, 262, 277, 339, 355
mean-squared displacement 456
measurable properties 10, 151
metastable phases, see stability
Metropolis acceptance criterion 460, 463, 465
microcanonical ensemble
classical 375, 382
definition 321
partition function 321, 375, 382
probabilities 320
simulation 450
microscopic properties 7
microstate
definition 12, 35, 328
probabilities 51, 72, 334, 361, 388, 393
minimum image distance 457
molecular simulation 444
molecular dynamics methods 450, 466–467
molecular weight 226
Monte Carlo methods 459, 468–469
Monte Carlo moves
acceptance probability 462
acceptance rate 460
maximum displacement 460
overview 459
particle addition and deletion 464
proposal probability 462
single-particle displacement 460, 465
symmetric 462
volume scaling 463
nanoparticles 303
natural variables 126
Newton’s laws 26, 41, 448, 450
nonideal gases
mixtures 171
pure 170
nonideal solutions
definition 230
vapor-liquid equilibrium 255
non-natural derivative rule 153
normal modes 297
nuclear states 306
nucleation 198
oceans 304
Onsager, Lars 189
osmotic pressure 224, 237, 240, 421
Otto cycle 120
pair potential
form 41, 445
truncation 458
virial 465
partial molar quantities 233, 238, 259
partial pressure 168
particle in a box 23, 162
partition coefficient 240, 244, 252
degrees of freedom 329
canonical 319, 346
classical 357, 375, 382
configuration 360, 391, 395
grand canonical 393
independent molecules 332
interpretation 321, 396
isothermal-isobaric 388
microcanonical 321, 382
molecular 412
multicomponent 398
reaction coordinate 439
single-molecule 332, 365, 412
path-dependence 94
periodic boundary conditions 457
perturbation theory 338
phase
definition 176
stable 207
unstable 207
phase diagram 181
phase equilibrium
boundaries 182, 258, 275, 311
conditions 178
discontinuities 184
liquid-liquid 229, 238-239, 241, 244
liquid-solid 281, 287, 300
liquid-vapor 90, 246
microscopic view 188
order parameters 194
polymer-solvent 264
with reaction 422
solid-solid 302
solid-vapor 300
phase transitions
first-order 187
second-order 187, 196
phase space 44, 72
photon gas 92
Planck’s constant 22, 359
Poisson-Boltzmann equation 268
Poisson’s equation 267, 277
polymers 213, 260, 463
postulatory approach 2
potential energy function
definition 26, 445
parameters 446
polarizable 448
transferability 446
potential energy landscape, see energy landscape
pressure
hydrostatic 304
negative 214
simulation 456
statistical mechanics 372, 394
virial 374, 380-381, 456, 465
principle of equal a priori probabilities 3, 51, 306, 319
probability
density 362
joint distribution 368
marginal distribution 368
process paths 93
production period 454
proteins and peptides 78-79, 199, 215, 340-341, 443
pumps 159
quantum effects 25
quantum mechanics 21, 306
quasi-static process 98
Rachford-Rice method 252, 258, 274
random-number generation 460
Raoult’s law 220, 242, 249
reaction coordinates
definition 425, 432, 439
probability 440
reaction equilibrium
binding 422
fluctuations 414
gases 407
general conditions 404, 407
heat effects 419-421
independence 417
with liquid-vapor equilibrium 422
nonideal systems 418
partition function 398, 413, 418
solutions 409
standard enthalpy 411
standard free energy 408-409, 418
statistical mechanics 412, 418
reaction rate
coefficient 426, 438
determinants 438
thermodynamics 425
Redlich-Kwong equation of state 215
regular-solution model 227, 240, 257, 377, 421
refrigeration 117, 317
relative volatility 254, 274
repulsive interaction, see interactions
response function 151
reversible process 98, 101
Sackur-Tetrode equation 45, 85, 92, 165, 375
sand-piston example 97, 100, 103, 116
Schrödinger equation 22-23, 293
second law of thermodynamics
closed systems 67
open systems 107
internal constraints 70
second virial coefficient 401
self-diffusivity 456, 466
semi-grand ensemble 398
shaft work 110
soft spheres 381
solubility
 gas 241, 244
 liquid 245
statistical mechanics 386
speed of molecules 370, 377
speed of sound 158
spinodal 207
stability
 conditions 201, 209, 310, 353
 connection to fluctuations 399
state functions 88
states, see equilibrium states
statistical independence 455–456, 465
statistical mechanics 12
Stirling’s approximation 16, 19, 40
sublimation 300
supercooled liquids 117, 202, 284
superheated liquids 201
supersaturated solutions 202
surfactants 423

temperature
 interpretation 34
 negative 353
 simulations 455
thermodynamic beta 324
thermal expansivity
 absolute-zero behavior 311
 definition 151
statistical mechanics 402
thermodynamic potentials
 definition 125
 fundamental forms 127
 integrated and derivative relations 137
 multicomponent 141
 per-particle versions 141
thermodynamic states, see equilibrium states
thermodynamic terminology 15
thermostat 455
theta temperature 276
third law of thermodynamics 305, 358, 417
throttling 174
tie line 247, 284, 300
time step 450
trajectory 450
transition probability 461
transition state
 definition 426, 431
 theory 426, 431
transmission coefficient 438
triple point 179, 302
triple-product rule 152
truncation of interactions, see pair potential
two-state model 38, 53, 56, 60, 315, 326, 335–336, 348, 352
uncertainty principle 32
universality 188, 209
van der Waals equation of state 158, 213, 382
van der Waals interactions, see interactions
van der Waals loop 192
van ‘t Hoff relation 411, 427
vapor pressure 182
Verlet algorithms 451, 465
virial, see pressure virial
virial expansion 173, 400
virial theorem 382

water
 anomalies 159, 302, 401
 freezing 114, 117, 302, 304
 hydrophobicity 118, 147, 423
 residual entropy 317
 response functions 151, 159, 401
 supercooling 117, 216
 triple point 302
 vaporization 183, 186
 wavefunction 21
 Widom insertion technique 385
work
 definition 93, 95
 electrostatic 97, 273, 278
 maximum 102, 146
 pressure-volume 95
tension 96