Quantum physics allows entirely new forms of computation and cryptography, which could perform tasks currently impossible on classical devices, leading to an explosion of new algorithms, communications protocols, and suggestions for physical implementations of all these ideas. As a result, quantum information has made the transition from an exotic research topic to part of mainstream undergraduate courses in physics.

Based on years of teaching experience, this textbook builds from simple fundamental concepts to cover the essentials of the field. Aimed at physics undergraduate students with a basic background in quantum mechanics, it guides readers through theory and experiment, introducing all the central concepts without getting caught up in details. Worked examples and exercises make this useful as a self-study text for those who want a brief introduction before starting on more advanced books. Solutions are available online at www.cambridge.org/9781107014466.

Jonathan A. Jones is a Professor of Physics at the University of Oxford, where he lectures on quantum information. His main research interest is in NMR implementations of quantum information processing.

Dieter Jaksch is a Professor of Physics at the University of Oxford, where he lectures on quantum information. His main research interest is the theory of ultracold atomic gases, with a focus on their potential applications in quantum information processing.
Contents

Introduction

Part I Quantum information

1 Quantum bits and quantum gates
 1.1 The Bloch sphere
 1.2 Density matrices and Pauli matrices
 1.3 Quantum logic gates
 1.4 Quantum networks
 1.5 Initialization and measurement
 1.6 Experimental methods
 Further reading
 Exercises

2 An atom in a laser field
 2.1 Time-dependent systems
 2.2 Sudden jumps
 2.3 Oscillating fields
 2.4 Time-dependent perturbation theory
 2.5 Rabi flopping and Fermi's Golden Rule
 2.6 Raman transitions
 2.7 Rabi flopping and Ramsey fringes
 2.8 Measurement and initialization
 Further reading
 Exercises

3 Spins in magnetic fields
 3.1 The nuclear spin Hamiltonian
 3.2 The rotating frame
 3.3 On- and off-resonance excitation
 3.4 The vector model
 3.5 Spin echoes
 3.6 Measurement and initialization
 Further reading
 Exercises
Contents

4 Photon techniques

4.1 Spatial encoding
4.2 Polarization encoding
4.3 Single-photon sources and detectors
4.4 Conventions
Further reading
Exercises

5 Two qubits and beyond

5.1 Direct products
5.2 Matrix forms
5.3 Two-qubit gates
5.4 Networks and circuits
5.5 Entangled states
Further reading
Exercises

6 Measurement and entanglement

6.1 Measuring a single qubit
6.2 Ensembles and the no-cloning theorem
6.3 Fidelity
6.4 Local operations and classical communication
Further reading
Exercises

Part II Quantum computation

7 Principles of quantum computing

7.1 Reversible computing
7.2 Quantum parallelism
7.3 Getting the answer out
7.4 The DiVincenzo criteria
Further reading
Exercises

8 Elementary quantum algorithms

8.1 Deutsch’s algorithm
8.2 Why it works
8.3 Circuit identities
8.4 Deutsch’s algorithm and interferometry
8.5 Grover’s algorithm
8.6 Error correction
8.7 Decoherence-free subspaces
Further reading
Exercises
9 More advanced quantum algorithms

9.1 The Deutsch–Jozsa algorithm 85
9.2 The Bernstein–Vazirani algorithm 87
9.3 Deutsch–Jozsa and period finding 88
9.4 Fourier transforms and quantum factoring 90
9.5 Grover’s algorithm 91
9.6 Generalizing Grover’s algorithm 94
9.7 Quantum simulation 96
9.8 Experimental implementations 97
Further reading 97
Exercises 98

10 Trapped atoms and ions

10.1 Ion traps 99
10.2 Atom traps and optical lattices 100
10.3 Initialization 102
10.4 Decoherence 103
10.5 Universal logic 104
10.6 Two-qubit gates with ions 105
10.7 Two-qubit gates with atoms 106
10.8 Massive entanglement 109
10.9 Readout 110
Further reading 111
Exercises 111

11 Nuclear magnetic resonance

11.1 Qubits 113
11.2 Initialization 115
11.3 Decoherence 116
11.4 Universal logic 116
11.5 Readout 119
Further reading 122
Exercises 122

12 Large-scale quantum computers

12.1 Trapped ions 124
12.2 Optical lattices 125
12.3 NMR 126
12.4 Other approaches 126
Further reading 128

Part III Quantum communication

13 Basics of information theory

13.1 Classical information 131
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2</td>
<td>Mutual information</td>
<td>135</td>
</tr>
<tr>
<td>13.3</td>
<td>The communication channel</td>
<td>137</td>
</tr>
<tr>
<td>13.4</td>
<td>Connection to statistical physics</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>139</td>
</tr>
</tbody>
</table>

Quantum information

14	Quantum information	140
14.1	The density operator	140
14.2	Global and local measurements	142
14.3	Information content of a density operator	144
14.4	Joint entropy and mutual information	145
14.5	Quantum channels	146
	Further reading	150
	Exercises	151

Quantum communication

15	Quantum communication	152
15.1	Parametric down-conversion	152
15.2	Quantum dense coding	154
15.3	Quantum teleportation	156
15.4	Entanglement swapping	159
	Further reading	161
	Exercises	161

Testing EPR

16	Testing EPR	163
16.1	Bell inequalities	163
16.2	GHZ states	167
	Further reading	170
	Exercises	170

Quantum cryptography

17	Quantum cryptography	171
17.1	One-time pads and the Vernam cipher	171
17.2	The BB84 protocol	172
17.3	The Ekert91 protocol	174
17.4	Experimental setups	175
	Further reading	177
	Exercises	178

Appendix: Quantum mechanics

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
</table>

References

| References | 192 |
| Index | 196 |