
Introduction

Why yet another book on quantum information theory? Like many lecturers we began
writing this text because none of the alternatives seemed quite right. This book is aimed
squarely at undergraduate physics students who want a brief but reasonably thorough
introduction to the exciting ideas of quantum information, including its applications in
computation and communication. It is based on a short course we have taught to fourth-
year students at Oxford University since 2004; for the most part it only assumes knowledge
of elementary quantum mechanics and linear algebra, and so could even be taught to
third-year undergraduates. A brief revision guide to quantum mechanics is provided as an
appendix, which should cover any minor points that have been missed.

As the title implies the book is structured in three parts, starting with the basics of quantum
information and then applying this to quantum computation and quantum communication.
Part I is self-contained, but contains only the barest hints of the exciting applications which
attract many people to this field and so might prove unsatisfying on its own. Parts II and III
draw heavily on Part I, but are largely independent of each other, and it would be perfectly
possible to study only one of these two without the other.

As this text is aimed at physics undergraduates, we believe that it is vital to cover
experimental techniques, rather than merely presenting quantum information as a series of
abstract quantum operations. We have, however, concentrated on the basic ideas underlying
each approach, rather than worrying about particular experimental details. Our aim is not to
explain how quantum information processing can actually be achieved, but rather to provide
the reader with enough of an introduction to start understanding more specialist sources.
The choice of implementations described inevitably reflects our own research interests, but
is broad enough to provide an introduction to many important fields. We have, however,
almost completely neglected implementations with solid state devices.

In the first two parts of the book we have deliberately taken a cheerfully optimistic
approach to quantum information, largely treating quantum systems in terms of a highly
idealized picture. We do, of course, consider the problem of decoherence, and briefly de-
scribe methods that can be used for error correction, but in general we simply assume that
these issues can be ignored. This allows us to address some interesting quantum algorithms
without becoming bogged down in experimental details or notational complexities. This
approach is, however, inappropriate for quantum communication: while quantum compu-
tations generally either work or don’t work, communication protocols are dominated by
considerations of reliability and efficiency. Furthermore, current experimental implemen-
tations are often quite inefficient, and cannot simply be treated as ideal. For this reason we
begin Part III with a brief primer on information theory, and also take the opportunity to
introduce some slightly more sophisticated notations and mathematical techniques.
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2 Introduction

The experimental sections will make more sense to a reader with some basic famil-
iarity with atomic physics and optics, but this is not essential. The determined theorist
could largely neglect the four experimental chapters describing atom and spin implemen-
tations, but would probably be happier with a more focused and rigorous text. The chapter
on photon techniques is, however, essential reading before tackling Part III, as quantum
communication protocols are closely linked to the photon technologies used to implement
them.

Extensive references are included at the end of each chapter for readers who wish to take
these ideas further; these largely concentrate on textbooks and review papers, rather than
the primary literature, but we have also included a number of landmark papers and papers
of particular pedagogical interest.

We have provided a range of exercises at the end of each chapter. Most of these should
prove fairly straightforward, but worked answers are available. In some cases we do not
prove certain key results, but leave these proofs as an exercise for the reader. Quantum
information is a field best understood by doing these basic calculations which lead to
familiarity with the underlying ideas.

Our text inevitably goes slightly beyond our course as originally taught, but we have
endeavored to keep the range of topics covered very similar. We have, however, been
tempted to add one major extension, in the form of a chapter on more advanced quantum
algorithms. The material in this chapter is somewhat more challenging than the rest of the
text, but even so only provides a very basic introduction to this fascinating field.

We are grateful to all our colleagues who have taught us many of the topics explained in
this text. Any errors are, of course, entirely our own.
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PART I

QUANTUM INFORMATION
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1 Quantum bits and quantum gates

Classical information processing is performed using bits, which are just two-state systems,
with the two states called 0 and 1. By grouping bits together we can represent arbitrary pieces
of information, and by manipulating these bits we can perform arbitrary computations. The
corresponding basic element used in quantum information is the quantum bit, or qubit.
This is simply a quantum system with two orthonormal basis states, which we shall call |0〉
and |1〉.

There are many possible physical implementations of a qubit, such as spin states of
electrons or atomic nuclei, charge states of quantum dots, atomic energy levels, vibrational
states of groups of atoms, polarization states of photons, or paths in an interferometer. At
this stage the physical implementation is not important: the idea of a qubit is to abstract
the discussion away from physical details. Taking the standard approach of quantum in-
formation theory, we shall begin by not worrying too much about the properties of these
states, or even what their energies are; we shall simply assume that they are eigenstates of
the system’s Hamiltonian with known eigenvalues (that is, known energies). This approach
allows us to concentrate on the fundamental properties of the system, without considering
all the tedious details.1

We can in principle perform classical information processing on our quantum system by
using the two states |0〉 and |1〉 as our logical states 0 and 1 and proceeding in the usual
fashion, giving rise to the field of reversible computing, which will be explored briefly in
Part II. This, however, misses the point. A qubit is not confined to these two states, but can
be found in arbitrary superposition states. Although it is not immediately obvious what a
state like

|ψ〉 = α|0〉 + β|1〉, (1.1)

where α and β are complex numbers, actually means in information processing terms, it
is clear that quantum bits are in some sense more powerful than their classical equivalents.
Quantum information processing is, of course, the art of exploiting these superposition
states to perform information processing tasks which are impossible for classical systems.
Just as the real power of classical information processing requires groups of bits, the real
advantages of quantum information processing only become clear in systems with two or
more qubits; for simplicity, however, we are confining ourselves to single isolated qubits at
the moment.

Throughout this book we will assume that the reader is familiar with elementary quantum
mechanics, and in particular with Dirac’s notation for writing quantum states as kets, as

1 A more careful approach is necessary when considering how efficiently quantum information protocols can
actually be implemented, as will be seen in Part III.
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6 Quantum bits and quantum gates

Fig. 1.1 The Bloch sphere: the state |ψ〉 of a single qubit can be represented as a point on the surface of a sphere with radius
1, or equivalently by the Bloch vector which points from the origin to this point. The state can then be completely
described by its co-latitude θ (the angle between the Bloch vector and the z axis) and azimuth angleφ (the angle
between the projection of the Bloch vector into the xy plane and the x axis).

used above. No particularly sophisticated knowledge is necessary, and if the following two
sections make sense then you probably know enough quantum mechanics to understand
this book. A brief reminder of some key terms can be found in Appendix A.

1.1 The Bloch sphere

The enormous flexibility of a single qubit in comparison with a classical bit can be most
clearly seen using the Bloch sphere description of a qubit (Figure 1.1). This also provides a
simple but powerful way of visualizing the behavior of a qubit. We begin by looking again
at the general state of a single qubit, equation (1.1), and noting that this ket must have unit
norm, so that |α|2 + |β|2 = 1. The fact that the state does not change under global phase
shifts, so that eiγ |ψ〉 is completely equivalent to |ψ〉 for any real number γ , means that
we can always choose α to be real, and the normalization constraint is easily imposed by
making α and β depend on the cosine and sine of a single parameter. A particularly useful
form is to write

|ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉, (1.2)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π . Note that θ = 0 corresponds to |ψ〉 = |0〉, and θ = π

corresponds to |ψ〉 = |1〉; in these extreme cases the value of φ is irrelevant.
There is an obvious analogy between the variables θ and φ used above and those used

in spherical polar coordinates. Clearly any ket |ψ〉 can be associated with a single point on
the surface of a sphere of radius 1 with co-latitude and azimuth angles θ and φ; this sphere
is usually called the Bloch sphere. Alternatively (and entirely equivalently) a state can be
represented as a unit vector (connecting the origin and a point on the Bloch sphere), called
the Bloch vector.
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7 The Bloch sphere

Example 1.1 The two basis states |0〉 and |1〉, which correspond to the states 0 and 1 of a
classical bit, lie at the north and south poles of the Bloch sphere respectively, while a qubit
can lie anywhere at all on the surface. Another important group of states is the set of equally
weighted superpositions, with |α| = |β| = 1/

√
2, which lie on the equator of the Bloch

sphere, with the exact position determined by the relative phase of α and β. Unlike |0〉 and
|1〉, these states have no classical interpretation.

Like any other quantum state, the state of a qubit will evolve under the influence of its
Hamiltonian H. The time-dependent Schrödinger equation

i�
∂

∂t
|ψ〉 = H|ψ〉 (1.3)

has the solution

|ψ(t)〉 = U (t)|ψ(0)〉 (1.4)

with

U (t) = exp(−i(H/�)t). (1.5)

The evolution of quantum states can also be described using the compact notation

|ψ〉 Ht−→ U |ψ〉. (1.6)

Since H is Hermitian, the evolution operator U , usually called the propagator, must be
unitary.

The discussion above assumes that the Hamiltonian is time-independent, that is it does
not vary with time. This will not be true in a quantum computer, which is controlled by
varying the Hamiltonian. In many cases, however, the Hamiltonian is piecewise constant,
that is it has a constant value for some finite length of time, and is then replaced by a
different constant value for another finite time period, and so on. In this case the evolution
can be described using a series of propagators

|ψ〉 H1t1−→H2t2−→H3t3−→ U3U2U1|ψ〉 (1.7)

with U1 = exp[−i(H1/�)t1] and so on. It is, of course, possible to combine the sequence of
propagators into a single propagator, U = U3U2U1. Note that the sequence of Hamiltonians
is normally written with time running from left to right (that is the leftmost Hamiltonian is
the first to be applied), while the sequence of propagators is always written from right to
left, as the rightmost propagator is applied first. The situation is much more complicated
when the Hamiltonian varies continuously with time; it is possible to write down a formal
solution of the form of equation (1.7), but this is not generally a useful approach. For the
moment this issue will simply be ignored.

The fact that any propagator describing the evolution of a quantum system is unitary has
several significant consequences. Firstly it means that every propagator has an inverse, and
so quantum evolution is reversible. (One exception to this general principle is measurement,
which is discussed in more detail below.) Secondly unitary transformations are length
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8 Quantum bits and quantum gates

preserving and can in general be thought of as rotations of the vector describing the
quantum state. Since qubits live on the Bloch sphere, the evolution of an isolated qubit
under any Hamiltonian corresponds to a rotation of the vectors on the Bloch sphere.

1.2 Density matrices and Pauli matrices

It is frequently convenient to describe the state of a qubit using a vector, written using the
basis states |0〉 and |1〉 (the computational basis). The basis states take the simple forms

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
. (1.8)

(There is a potential ambiguity in any description of quantum bits, as to whether |0〉 and
|1〉 are defined as shown here, or the other way round; fundamentally, of course, the choice
does not matter, as long as one is consistent.) In this basis equation (1.1) can be written as

|ψ〉 =
(

α

β

)
, (1.9)

while the corresponding bra can be written as

〈ψ | = (
α∗ β∗) , (1.10)

as a bra is the adjoint of the corresponding ket, and for a matrix the adjoint is the complex
conjugate of the transpose.

Bras and kets are frequently combined by taking the inner product, such as

〈ψ |ψ〉 = (
α∗ β∗) (α

β

)
= α∗α + β∗β = 1 (1.11)

but they can also be combined using the outer product

|ψ〉〈ψ | =
(

α

β

) (
α∗ β∗) =

(
αα∗ αβ∗

βα∗ ββ∗

)
. (1.12)

This outer product is called a density matrix description of the state. As we will see later,
density matrices can provide a very useful approach to describe qubits whose states are at
least partly unknown, called mixed states, but for the moment we will use them simply to
explore an alternative to the ket notation for pure states.

It is obvious from the form of equation (1.12) that the density matrix describing a qubit
is Hermitian, and has trace one; these are in fact general properties which apply to all
density matrices. A two-by-two matrix can always be expanded as a weighted sum of four
basic matrices (a matrix basis), and perhaps the most useful basis is provided by the Pauli
matrices

σ0 =
(

1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
, (1.13)
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9 Density matrices and Pauli matrices

where the usual set of three matrices has been extended to include the identity matrix
σ0 = 1. As the Pauli matrices are Hermitian, a density matrix can be written as

|ψ〉〈ψ | = 1
2

(
σ0 + sxσx + syσy + szσz

)
, (1.14)

where sx, sy and sz are three real coefficients. This might seem excessive, as we know that
any pure state can be described using only two real numbers (θ and φ), but it is easily shown
that sx, sy and sz are not completely independent, being the three components of a vector of
unit length; this vector is identical to the Bloch vector, discussed above.

Qubits can also be found in mixed states, which are just weighted sums of pure states of
the form

ρ =
∑

n

Pn|ψn〉〈ψn|, (1.15)

where Pn ≥ 0 is the contribution of the pure state |ψn〉〈ψn| to the mixture (the probability of
the pure state occurring in the mixture). Clearly such mixed states are Hermitian, and as the
probabilities of the various contributions must sum to one (

∑
n Pn = 1), the density matrix

must have trace one. It can be shown that any mixed state of a single qubit corresponds to
a point inside the Bloch sphere.

It is useful to be able to calculate the evolution of states described using a density matrix
rather than a ket vector. This problem can be addressed directly by solving the Liouville–
von Neumann equation (the density matrix equivalent of the time-dependent Schrödinger
equation), but it is simple to proceed by analogy. The evolution of a bra vector is clearly
closely related to the evolution of the corresponding ket vector

(U |ψ〉)† = 〈ψ |U †, (1.16)

and so the density matrix description of a pure state evolves according to

|ψ〉〈ψ | Ht−→ U |ψ〉〈ψ |U † (1.17)

and the linearity of the operations guarantees that a mixed state will evolve in the same way.
We have already noted that the Pauli matrices are Hermitian, and thus provide a natural

basis for describing the density matrix corresponding to a qubit. In the same way, the fact
that any Hamiltonian is Hermitian means that any Hamiltonian for a single qubit can be
written as a weighted sum of the four Pauli matrices, equation (1.13), where the weights
are real. This means that the Pauli matrices provide a natural language for describing
single-qubit Hamiltonians as well as single-qubit states. Furthermore the Pauli matrices are
unitary, and so correspond to possible propagators. As we shall see later, the Pauli matrices
viewed as propagators correspond to important quantum logic gates. It might seem that
using the Pauli matrices to describe quantum states, Hamiltonians, propagators, and logic
gates will inevitably lead to confusion, but in practice such problems rarely occur.

The fact that the Pauli matrices are both unitary and Hermitian has the interesting
consequence that

σ 2
α = σ0, (1.18)
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10 Quantum bits and quantum gates

where σα are the usual Pauli matrices, with α equal to x, y or z. This observation can be
combined with the series expansion of an exponential operator to show that

exp(−iθ σα) = cos(θ )σ0 − i sin(θ )σα (1.19)

without diagonalizing any matrices, making it easy to calculate many single-qubit
propagators.

Finally we note that the propagator corresponding to a Hamiltonian that is some multiple
of σ0 is simply a global phase shift, which has no physical significance. In essence this
occurs because adding multiples of σ0 corresponds to moving the zero-point of the energy
scale, which has no physical significance.

1.3 Quantum logic gates

The basic idea of quantum information processing is that information is stored in quantum
bits and processed by quantum logic gates. Just as classical logic gates take classical bits
from one state to another, so quantum logic gates take qubits from one state to another. This
can be achieved by modifying the system’s Hamiltonian, by applying additional control
fields to the background Hamiltonian which underlies the system.

Applying Hamiltonians will cause qubits to evolve under unitary transformations, which
are reversible. With classical bits there are only two reversible gates that act on a single
bit: the NOT gate, which takes a bit in state 0 into state 1 and vice versa, and the IDENTITY

gate, which just leaves the bit unchanged. (It may seem excessive to consider trivial gates
such as IDENTITY, but the formalism works better if they are included.) There are also two
irreversible gates, SET which sets a bit to 1 whatever its initial state, and CLEAR which sets a
bit to 0. Clearly these two cannot be achieved with unitary transformations, and so we will
neglect them for the moment.

Returning to the two reversible gates, we must first find unitary propagators that imple-
ment them. Clearly σ0 will perform IDENTITY as(

1 0
0 1

)(
1
0

)
=

(
1
0

)
and

(
1 0
0 1

)(
0
1

)
=

(
0
1

)
(1.20)

while σx corresponds to NOT as(
0 1
1 0

)(
1
0

)
=

(
0
1

)
and

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
. (1.21)

We now have to find Hamiltonians which can give rise to these propagators. Obviously σ0

can in principle be achieved simply by doing nothing at all, but in fact the IDENTITY gate
is slightly more subtle than it might seem, as the state of the qubit will continue to evolve
under the background Hamiltonian even when no additional control fields are applied, and
unless the IDENTITY gate is instantaneous this background evolution must be considered.
Achieving σx is only slightly more difficult: using equation (1.19)

exp(−iπσx/2) = −iσx (1.22)
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