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1 Introduction

Information and the communication of that information comprise the nerve system

of civilization, and civilization depends on the availability of reliable methods for

the protection of information from intruders and adversaries. There are many ways

the collection and communication of information needs to be protected and made

trustworthy. The requirements are central to the orderly functioning of society and may

include secrecy, integrity, nonrepudiation, authentication, covertness, copy resistance,

certification, authorization, and ownership protection. These various topics can be

regarded as more or less distinct requirements, although of course there are considerable

overlaps. Together they form the topic of secure communications. At the center of these

various topics, as well as at the heart of this book, is the classical topic of cryptography.

Communication and cryptography are closely related topics in the general field of

telecommunication. Communication is the process of exchanging data and messages.

By itself, the term communication carries an active, positive tone and suggests coop-

eration and openness. Yet the process of communication does have its competitive,

defensive side. The nature of social and economic interaction can impose a great vari-

ety of subtle requirements on the structure of a communication system to ensure various

forms of security, privacy, and trustworthiness.

Secrecy and authentication are complementary functions in a communication sys-

tem. Secrecy is the function that ensures that a message cannot be understood by an

eavesdropper. Authentication is the function that ensures that the message originated

with the indicated source of that message. The purpose of authentication is to verify the

source of the message. It does not verify the identity of the transmitter of a message,

a function known as identification. Authentication can be provided by a digital signa-

ture that must be impervious to forgery. This requirement leads to connections with

cryptography. Cryptography consists of the study, development, and implementation

of methods for protecting data; cryptanalysis is the study, development, and implemen-

tation of methods for attacking and breaking cryptosystems. Taken together, the two

subjects of cryptography and cryptanalysis form the topic of cryptology.

The elementary notion of a classical cryptosystem is familiar to many puzzle solvers

who enjoy recreational cryptograms. Recreational cryptograms are a widespread fea-

ture of newspapers and are popular with puzzle solvers. Because each letter of the
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2 Introduction

alphabet is represented in a cryptogram by another letter, a solution amounts to finding

which of 26! possible permutations is the “key.” These recreational cryptograms usually

appear with the word spaces intact, which gives useful information to the solver and

allows the puzzles to be solved quite simply. However, even without the word spaces,

the cryptograms are still rather easy to solve. We conclude from this observation that

one does not actually try all 26! possible permutations. This would be a formidable

task. Instead, the puzzle solver uses some kind of hierarchical structure in which the

permutation is deduced by a sequence of inferences. In the language of this book,

the recreational cryptanalyst attacks the cryptosystem using prior knowledge of both

the structure of the cryptosystem and the linguistic structure and content of the likely

encrypted messages.

1.1 Classical cryptography

A message (x1, x2, . . . , xn), herein called a plaintext message, consists of a sequence

of n symbols from a given finite alphabet A of size #A. For convenience, we may

often regard the length n of the plaintext message to be fixed in advance in order

to avoid certain uninteresting distractions that can arise when treating variable-length

messages. Then the message (x1, x2, . . . , xn) is an element ofAn, but not every element

of An need be a legitimate plaintext message of the given application. Let M ¢ An

denote the set of legitimate plaintext messages. When appropriate, the set M is called a

natural language or, more simply, a language. This statement implies that, in general,

not every element of An is a plaintext message. This is denoted by M "= An. Indeed,

the cardinality of M is usually much smaller than the cardinality of An, which we write

as #M � #An. This observation plays an important role in the information-theoretic

approach to cryptography.

For the simplest model of the English language, m = 26, all letters are upper case,

and there is no symbol for a space. Whenever we require messages to have a fixed

length n, we may pad a shorter message at the end with copies of a filler symbol,

such as the symbol Z (or a blank space or other alternative null symbol), to make the

message have the standard length n. For this simple model of English, An = 26n, but

the legitimate plaintext messages, as determined by M, are far fewer.

Ciphers may be classified as either of two types: block ciphers and stream ciphers. A

block cipher of blocklength n first segments a longer plaintext message x, say of length

N , into N/n blocks (or segments); each block has length n, and the message is now

written {x1, x2, . . . , xN/n}, where x� is the �th block of the message. For this purpose,

we require that n divides N . Each plaintext block x�, for � = 1, . . . , N/n, consists of

n sequential symbols of the message, with each symbol from the given alphabet A.

Thus x� * An.
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3 1.1 Classical cryptography

For many elementary block ciphers, n = 1. This means that symbols are encrypted

independently, although by a common encryption rule. Such ciphers are far too trivial to

be used in serious applications, although they are popular in recreational applications,

and will be described here.

A block encryption function is a map, denoted e(x), that maps a message block x

of length n into another block, often also of length n, called a ciphertext block, and

denoted y = e(x). Thus y * An. A key is an element k from a setK called the keyspace.

The function of a key k * K is to specify an encryption function, now denoted ek(x),

from a predefined set of encryption functions indexed by k. A block encryptor is a

collection of maps, denoted {ek(x), k * K}, forming the set of encryption functions. A

block decryptor is the collection of inverse maps {dk( y) = e21
k ( y)}, also indexed by k.

Thus for each k, dk(ek(x)) = x. This arrangement, in which both the encryptor and the

decryptor have access to the same key k, is called a symmetric-key cryptosystem. We

will see eventually, and perhaps surprisingly, that some cryptosystems have a different

key at the encryptor and the decryptor. This is called an asymmetric-key cryptosystem.

In this case, each decryption key, which itself must be kept secret, is associated with a

corresponding encryption key, which can be made public. This encryption key needs to

be suitably published only once by that decryptor or by a trusted proxy. Thereafter, the

decryptor or the proxy can be completely passive. Indeed, the proxy can be dissolved. It

is no longer needed for this purpose. In contrast, in order to form a key using a symmetric

cryptosystem, the decryptor must actively interact with every transmitter that intends

to send one or more encrypted messages. For practical reasons, this interaction needed

to create a secret symmetric key is usually public, and so it is referred to as a public

key exchange. A public key exchange is different from a public encryption key, though

both are public.

Another advantage of an asymmetric-key cryptosystem is that the leaking of the

encryption key does not compromise the system because, in fact, the encryption key

is public. Of course, this consideration requires that neither the decryption key nor

the plaintext can be deduced from the public encryption key and the ciphertext. In

particular, this system is vulnerable if it is used with a message space so small that it is

possible to simply encrypt every possible message with the public encryption key until

the given ciphertext is observed, thereby revealing the actual plaintext corresponding

to that ciphertext. This possibility is countered by padding all short messages with

randomly generated bits. In this way, inadequate entropy in the message space is

supplemented with the additional entropy of the random padding.

The cipherspace, or cryptspace, of the key k is the set ek(M). The cipherspace

is contained in AN whenever the alphabet and blocklength of the ciphertext are the

same as the alphabet and blocklength of the plaintext. It is clear that dk(ek(M)) =

M. However, in general, dk"(ek(M)) "= M for k" "= k. Indeed, it may be true that

dk"(ek(M)) + M = Ç for every k" "= k. In that case, in principle, the encryption is not

secure. It is vulnerable to a direct attack. Simply compute dk"( y) for every k" and choose
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4 Introduction

that k" for which dk"( y) * M. Of course, if #K, the cardinality of the keyspace K, is

large enough, a direct attack may not be feasible because of excessive computations.

Thus from a practical point of view, secrecy may depend on computational resources.

In the contrary case, it may be that dk"(ek(M)) = M for all k" "= k and for all k.

This is an example of perfect secrecy. For any ciphertext y and any plaintext x there

is a key k for which ek(x) = y. Any plaintext message could be the right one. Only if

the key is known or partially known can the plaintext be deduced, or partially deduced,

from the ciphertext.

The only cryptosystem proven to have perfect secrecy is the one-time pad. Suppose

that both the encryptor and the decryptor have an identical copy of a long, random,

binary sequence u = (u�, � = 0, . . .), called a one-time pad. Let x = (x�, � = 0, . . . , )

be the plaintext represented in the form of a binary sequence. The encryptor transmits

y = x + u (where + denotes componentwise modulo-two addition) and the decryptor

computes y + u. Because u + u = 0 modulo two, the decryptor has recovered the

plaintext x. The adversary, or eavesdropper, sees only y, which is an unintelligible

ciphertext with its alphabet and blocklength the same as that of the plaintext. It is

impossible to recover x, in whole or in part, without knowing u.

The one-time pad will not be fully secure if the same random sequence u of the pad

is used twice. This is because, u + u = 0 modulo two, so if the two messages x1 and

x2 are encrypted with the same binary key, then y1 = x1 + u and y2 = x2 + u, from

which the cryptanalyst can compute that y1 + y2 = x1 + x2. Because x1, x2 * M, and

M is presumably sparse in An, it is possible with sufficient computational resources to

list all x1 and x2 for which x1 + x2 equals y1 + y2. We may expect this list of x1 and

x2 to be much smaller than |M|2. In this way, the two ciphertexts have been partially

decrypted by reducing them to a list of possible pairs of plaintexts.

Although the one-time pad is secure at the cryptographic level, it may still fail

against side-channel attacks. Its weakness is that it requires both the encryptor and the

decryptor to have an identical copy of the one-time pad. In practice, this means that

the problem of cryptographic security is replaced by the problem of the distribution

and protection of the one-time pad. This would be an equivalent problem unless the

circumstances for the distribution of the one-time pad could be made different from the

circumstances for the distribution of the ciphertext. For example, a trusted courier can

physically carry the one-time pad from one user to the other, or the one-time pad could

be distributed at an earlier time, in a different situation, and over a channel known to

be secure.

Classical methods of key distribution are not practical on a large public network.

Accordingly, new methods of public key exchange or public key agreement have been

developed in recent years both for message secrecy and for message signatures. Sur-

prisingly, such methods are in use for creating secret keys between two strangers in full

view of adversarial third parties. These modern methods depend on the computational

intractability of the adversarial cryptanalyst’s task.
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5 1.2 Notions of cryptographic secrecy

The practice of cryptography requires that formal procedures for using a given

cryptographic technique be in place so that the key is not divulged by improper use.

These methods are referred to as cryptographic protocols, which often can be under-

stood without understanding the cryptographic techniques themselves. The protocols

are variously studied under the name information security, rather than information

secrecy, which more usually refers to the cryptography. The subject of this book falls

primarily under the heading of information secrecy, but the methods of information

security are close at hand, and also require discussion. Indeed, it is often not possible

to draw a clear distinction between the tasks of secrecy and security.

1.2 Notions of cryptographic secrecy

Classical cryptography relies on the distribution of a secret key over a secure channel.

This is unacceptable in modern applications because communication routinely takes

place over large public networks between strangers, with no opportunity to prearrange

the distribution of a secret key. Secure communication between two such parties will

require that the two parties set up their key over a public channel and in the clear.

This is both possible and routinely done. More precisely, it is generally believed that

the methods now in common use for doing this are secure. It is possible – or so we

believe – for two parties to arrange a secret key, one that only they will know, using

only communications over a public channel in full view of a sophisticated adversary.

Such methods can only give computational or practical secrecy, never perfect secrecy.

They can be broken by an adversary with infinite computational resources. Much of

this book is devoted to the study of methods of doing this, and to ways of attacking

such methods.

Early attempts to define cryptographic security were based on the notion of perfect

secrecy or perfect security, a notion that is only assured by a one-time pad and is

usually impossible to meet in everyday situations. This notion has now been supple-

mented by alternative and more practical definitions of cryptography motivated by the

question “When is a cryptographic system computationally secure?” The notion of

computational security underlies the modern methods of public-key cryptography, but

the notion of perfect secrecy remains as a stronger and more desirable requirement that

is rarely met. A computationally secure system may be perfectly insecure when judged

by a more rigid standard.

We will define four notions of secrecy against an attack in which the cryptanalyst

has only the ciphertext, but always has full knowledge of the method of encryption.

Only the key is unknown to the cryptanalyst.

1. Perfect or information-theoretic secrecy: The ciphertext gives no information about

the plaintext.
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6 Introduction

2. Unconditional secrecy: It is impossible to break the ciphertext with infinite compu-

tational resources, even with the best possible algorithm.

3. Computational secrecy: It is intractable to break the ciphertext with “practical”

computational resources, even with the best possible algorithm.

4. Practical secrecy: It is intractable to break the ciphertext with “practical” computa-

tional resources using the best known algorithm.

These four notions of secrecy are listed in the order of their decreasing apparent

weakness. We would like the statements we make about cryptographic systems to be

as strong as possible. However, we are usually unable to make a statement that a given

cryptosystem is perfectly secure – because most are not. We can state only what we

know, which is that for many cryptography systems, the system is perfectly insecure

from a theoretical point of view, meaning that each of these systems can be broken in

unlimited computational time or with unlimited computational resources. Moreover,

we do not often know the complexity of the best possible algorithm for a given task.

Usually we do not know the best possible algorithm. Statements about the best possible

algorithm are either not known or are heavily qualified. Usually, we are content with

practical secrecy even though this notion is informal and imprecise. The set of known

algorithms changes with time, and the notion of a practical computation changes with

time as well. Thus, to claim practical secrecy is to claim nothing of permanent truth.

Any discussion of practical secrecy should include some consideration of the desired

longevity of the secrecy. One will use a stronger system for a message that must remain

secret for decades than for a message that must remain secret for months. One should

assume that, except for the one-time pad, every cryptography system can be broken

eventually, though perhaps not for centuries.

A cryptography system also may be vulnerable to various kinds of side-channel

attacks. A side-channel attack uses a variety of “externalities” to gain information

about a message or a key through the “backdoor.” The perceived relationship between

the source of the message and the user of the message, or the time and circumstances of

message transmission, may be useful to the cryptanalyst. Any measurement regarding

the amount of time taken for an encryption or decryption computation may give some

information about the key. Such information, even when it is meager, may be useful

to the cryptanalyst when combined with other sources of information. It is possible

that a faint echo of the plaintext message will be present on one or more wires leaving

the encryption device, even perhaps unintentionally leaked in this way on the power

cord. Even the electromagnetic or infrared signature of the encryption device may be

scrutinized to gain information about the encryption key, however slight. This side-

channel information might be used to supplement a direct attack.

Recurring message patterns of the user, such as starting every message with the date

or a formal salutation, have been used to successfully attack a cryptosystem. For such

reasons, some systems alter the key for each encrypted message with an unencrypted
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7 1.3 Block ciphers

but randomly chosen number to further randomize the message space. The secret key

is modified by adding the random number to it, then appending this random number

unencrypted as an attachment to the ciphertext. That random number is added to the

secret key for encrypting and for decrypting that specific message. In this way, although

a new key is not exchanged, each message is effectively encrypted with a different key

in order to further hide recurring user patterns that may be present. Of course, the

secrecy resides only in the original key, but certain attacks are foiled in this way.

In the end, it may be that the best way for an adversary to circumvent a modern

cryptosystem is to find a way to enter the encryptor before the encryption takes place

or to enter the decryptor after the decryption takes place, and to so read the plaintext

directly. A totally secure lock on the front door does no real good if the windows are

unprotected. This kind of vulnerability to an intruder is outside of the scope of this book.

1.3 Block ciphers

A block cipher segments a message into plaintext blocks of a fixed length, encrypts each

plaintext block into a corresponding ciphertext block of a fixed length, then concatenates

the encrypted blocks to form the encrypted message. Generally, the plaintext blocks

and the encrypted blocks have the same length. We will usually assume that this is

the case, though it is not always so. The decryptor reverses this procedure, breaking the

concatenated stream of ciphertext blocks into individual blocks and decrypting these

blocks one by one. The decrypted plaintext blocks are then concatenated to recover

the original message.

We will describe elementary block ciphers in this section, mostly by way of exam-

ples. These elementary block ciphers are much too weak to be useful in any serious

application. Some elementary ciphers may be useful for providing rudimentary privacy,

but are easily broken by straightforward computational methods. They serve here only

as a way to introduce the subject of cryptography and its terminology, to suggest its

history, and to motivate the search for secure methods.

The simpler of the elementary block ciphers have a blocklength n equal to one.

Each block x� of the plaintext is only a single symbol of the alphabet A, and each

block y� = ek(x�) of the ciphertext is also a single symbol of the alphabet A. The

message (x1, . . . , xn) then is encrypted, one symbol at a time, to produce the ciphertext

(y1, . . . , yn) = (ek(x1), . . . , ek(xn)). In the simplest case, the key k and the encryption

function ek remain the same for all symbols of the message.

For an elementary block cipher of blocklength n equal to one, an encryption function

will only be a permutation of the alphabetA, i.e., the q = #A symbols of the alphabetA

are encrypted by a permutation of the alphabet, denoted by Ãk : A ³ A, or x !³ Ãk(x).

Each key k specifies one permutation. Thus the keyspace K is a subset of Sq , where

Sq is the group of permutations on a set of q elements.
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8 Introduction

Some elementary ciphers have standard names. A substitution cipher1 of blocklength

one (not to be confused with a permutation cipher to be discussed later) is a cipher in

which the set of keys is the set of all permutations of an alphabet of size q = #A. Thus

K = Sq , and #K = q!. It is common to refer to q! as the cardinality of the key space,

and the size of the equivalent binary key needed to specify a permutation is log2(q!)

bits. For example, if q = 26, the size of the equivalent binary key is log2(26!) j 90,

so the equivalent binary key size is about 90 bits. A single key of the recreational

cryptogram is the permutation

(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z)

(F G Q P N A D E O B U J V H Y I T W K X R C L S Z M).

There are approximately 290 such substitution keys on an alphabet of 26 letters. The

set of recreational cryptograms is an example of a substitution cipher on an alphabet

with 26 letters.

For a larger example of a substitution cipher, a standard keyboard is often regarded as

having 256 characters. Then the alphabet has size 256. Thus there are 256! permutations

on this set, so a substitution cipher that used all possible keys would have an equivalent

key size of log2(256!) bits. This is a very large number, and it would require a binary

word with more than a thousand bits to specify one key from this set. Accordingly, one

will usually choose to restrict the keyspace in some way, as determined by the details

of the encryption algorithm. The actual key will be much smaller than log2(256!) bits,

and so the set of allowable permutations will be much smaller as well.

All block ciphers of blocklength one are actually substitution ciphers. The named

block ciphers of blocklength one are defined by restricting the set of permutations

to those that can be described by some specialized simpler rule. A shift cipher is

a special case of a substitution cipher. A shift cipher consists only of permutations

that are cyclic shifts of alphabet A. Let A be represented by the set of integers with

addition modulo q, denoted Zq . If A is the roman alphabet, then q = 26 and the

letters of A can be represented by the integers from 1 to 26. Then the encryption

function is ek(xi) = xi + k (mod 26). The keyspace of the shift cipher has size 26 and

the equivalent binary key size is log2 26, which is less than five bits. Because the

keyspace is so small, the shift cipher is not secure, though it may be used as a privacy

cipher.

An affine cipher of blocklength one is given by ek(xi) = axi + b (mod 26). So that

this function can be inverted, a21 (mod 26) must exist, but b can be any element of Z26.

Elementary number theory, which is reviewed in the next chapter, states that for the

inverse a21 to exist, a must satisfy GCD(a, q) = 1. The set of a that have inverses under

modulo-q arithmetic is denoted Z7
q . For the roman alphabet, q = 26 and Z7

26 = 12.

1 A substitution cipher permutes the letters of the alphabet. A permutation cipher permutes the letters of the

message block.
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9 1.3 Block ciphers

Therefore the affine cipher ek(xi) = axi + b (mod 26) has 12 · 26 keys (12 choices for

a and 26 choices for b), and the equivalent binary key size is less than nine bits. Of

these, the trivial key with a = 1 and b = 0, and perhaps other trivial keys, should be

avoided.

Block ciphers with a blocklength n larger than one can be defined similarly. If each

symbol is from an alphabet A of size q, then each block of length n is from an alphabet

An of size qn. Then K is a subset of Sqn , the group of permutations on qn elements.

It may even be that K is equal to Sqn . Then the cipher is called a block substitution

cipher.

For example, the simplest model of the English language has q = 26. If n = 2, then

there are 262 = 676 pairs of letters. A block substitution cipher on blocks of length two

replaces each pair of letters with a substitute pair of letters. This block cipher is a set of

simple look-up tables, each with 676 entries, one entry for each pair of letters, and one

such look-up table for each key. To break this blocklength-two substitution cipher is

much harder than it is to break the elementary recreational cryptogram of blocklength

one described earlier. Because there are (262)! permutations on pairs of letters, there

are (262)! distinct blocklength-two substitution ciphers on an alphabet of size 26. This

is an immense number, not to be confused with (26!)2. If all of these permutations are

indexed by keys in a keyspace K, then the size of the keyspace is (262)!. One cannot

attack this cipher by exhaustively trying all keys; there are far too many. Because (26)2!

is an immense number – too large to index the keys – one should expect that only a

subset of these permutations would be used as keys in a given practical cipher, and

that restricted keyspace would be defined by a tractable rule for defining the key. A

cryptanalyst would use knowledge of this restricted keyspace, were it known, but this

knowledge will presumably be useless in a well-designed cipher.

There are elementary block ciphers of this kind that have standard names: A Vigenère

cipher is a componentwise additive cipher on blocks of length n symbols using an

additive key of length n symbols. For example, let SNOW denote a Vigenère key

with blocklength n = 4. This key has the numerical equivalent (19, 15, 16, 23). To

encrypt the word “ball,” add componentwise modulo 26 the numerical equivalents

(2, 1, 12, 12) + (19, 15, 16, 23) = (21, 16, 2, 9), which becomes “UPBI.” To decrypt,

again using the key “SNOW,” write (21, 16, 2, 9) 2 (19, 15, 16, 23) = (2, 1, 12, 12),

which recovers the word “ball.”

A Hill cipher of blocklength two has the form
�

y1

y2

�

= M

�

x1

x2

�

,

under modulo-q arithmetic, where M is an invertible matrix modulo q. The matrix will

be invertible if (det M)21 exists in Zq , and this inverse exists if the greatest common

divisor of det M and q is equal to one. The Hill cipher provides our first example of

a cipher that uses number theory in a nontrivial way. For example, to specify a Hill
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10 Introduction

cipher of blocklength two requires a two-by-two matrix that is invertible modulo 26.

The matrix

M =

�

1 2

3 4

�

satisfies GCD(det M, 26) = 2, so this M cannot be used to key a Hill cipher. The

matrix

M =

�

1 2

3 5

�

is suitable because now GCD(det M, 26) = 1. Therefore

M21 =

�

21 2

3 25

�

modulo 26. To encrypt the word “ball” with this Hill cipher, the numerical equivalent,

(2, 1, 12, 12), is encrypted two letters at a time as
�

y1

y2

�

=

�

1 2

3 5

��

2

1

�

�

y3

y4

�

=

�

1 2

3 5

��

12

12

�

,

modulo 26. Then y = (4, 11, 10, 18), which becomes “DKJR” in the ciphertext. In this

way, the plaintext “ball” is represented by the ciphertext “DKJR.”

To decrypt, write
�

x1

x2

�

=

�

21 2

3 25

� �

4

11

�

�

x3

x4

�

=

�

21 2

3 25

� �

10

18

�

,

modulo 26. Then x = (2, 1, 12, 12), which reduces to the word “ball,” thereby recov-

ering the plaintext message.

A permutation cipher of blocklength N is given by

£

¤

¤

¤

¥

y1

y2

...

yN

¦

§

§

§

¨

= M

£

¤

¤

¤

¥

x1

x2

...

xN

¦

§

§

§

¨

,

where M is an N-by-N matrix with a single one in every column and a single one in

every row and all other elements are equal to zero. Such a matrix is called a permutation
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