Contents

List of contributors xvi
Preface xxi

Part I Communication architectures and models for smart grid 1

1 Communication networks in smart grid: an architectural view 3

1.1 Introduction 3
1.2 Smart grid conceptual model 5
1.3 Smart grid communication infrastructures 6
 1.3.1 Home-area networks (HANs) 8
 1.3.2 Neighbourhood-area networks (NANs) 8
 1.3.3 Wide-area networks (WANs) 8
 1.3.4 Enterprise 9
 1.3.5 External 9
1.4 Interoperability issues 9
1.5 Role of communication infrastructures in smart grid 12
 1.5.1 Customer premises 12
 1.5.2 Core communication network 15
 1.5.3 Last-mile connection 18
 1.5.4 Control centre 20
 1.5.5 Sensor and actuator networks (SANETs) 21
1.6 Security and privacy in the communications infrastructure for smart grid 23
 1.6.1 Component-wise security 23
 1.6.2 Protocol security 24
 1.6.3 Network-wise security 25
1.7 Open issues and future research directions 26
 1.7.1 Cost-aware communication and networking infrastructure 26
 1.7.2 Quality-of-service (QoS) framework 26
 1.7.3 Optimal network design 27
1.8 Conclusion 27
Contents

2 New models for networked control in smart grid

2.1 Introduction 34
2.2 Information in today’s power system management operations 35
2.2.1 The management operations in today’s power systems 35
2.2.2 Supervisory control and data acquisition (SCADA) 37
2.2.3 Basic models for power system controls 38
2.2.4 Existing power grid controls 41
2.2.5 The intrinsic difficulties of networked control 42
2.3 Enhanced smart grid measuring functionalities 43
2.3.1 State estimation 44
2.3.2 Wide-area measurement system (WAMS) and GridStat 46
2.4 Demand-side management and demand response: the key to distribute cheap and green electrons 49
2.4.1 The central electricity market 50
2.4.2 Real-time pricing 55
2.4.3 Direct load control 59
2.4.4 Possibilities and challenges at the edge of the network 60
2.5 Conclusion 61

3 Demand-side management for smart grid: opportunities and challenges

3.1 Introduction 69
3.2 System model 70
3.3 Energy-consumption scheduling model 71
3.3.1 Residential load-scheduling model 71
3.3.2 Energy-consumption scheduling problem formulation 72
3.3.3 Energy-consumption scheduling algorithm 75
3.3.4 Performance evaluation 76
3.4 Energy-consumption control model using utility functions 77
3.4.1 User preference and utility function 77
3.4.2 Energy consumption-control problem formulation 79
3.4.3 Equilibrium among users 81
3.4.4 The Vickrey–Clarke–Groves (VCG) approach 84
3.4.5 Performance evaluation of power-level selection algorithms 86
3.5 Conclusion 88

4 Vehicle-to-grid systems: ancillary services and communications

4.1 Introduction 91
4.2 Ancillary services in V2G systems 92
4.3 V2G system architectures 95
4.3.1 Aggregation scenarios 97
4.3.2 Charging scenarios 98
4.4 V2G systems communications 99
Contents

4.4.1 Power-line communications and HomePlug 99
4.4.2 Wireless personal-area networking and ZigBee 99
4.4.3 Z-Wave 100
4.4.4 Cellular networks 100
4.4.5 Interference management and cognitive radio 101
4.5 Challenges and open research problems 101
4.5.1 Fulfilling communications needs 101
4.5.2 Coordinating charging and discharging 103
4.6 Conclusion 103

Part II Physical data communications, access, detection, and estimation techniques for smart grid

5 Communications and access technologies for smart grid 111
5.1 Introduction 111
5.1.1 Legacy grid communications 112
5.1.2 Smart grid objectives 112
5.1.3 Data classification 116
5.2 Communications media 117
5.2.1 Wired solutions 118
5.2.2 Wireless solutions 121
5.3 Power-line communication standards 125
5.3.1 Broadband power-line communications 126
5.3.2 Narrowband power-line communications 128
5.3.3 PLC coexistence 130
5.4 Wireless standards 131
5.4.1 Short-range solutions 131
5.4.2 Long-range solutions 133
5.5 Networking solutions 136
5.5.1 Hybrid solutions 136
5.5.2 Public vs. private networks 137
5.5.3 Internet and IP-based networking 137
5.5.4 Wireless sensor networks 139
5.5.5 Machine-to-machine communications 140
5.6 Conclusion 142

6 Machine-to-machine communications in smart grid 147
6.1 Introduction 147
6.2 M2M communications technologies 150
6.2.1 Wired vs. wireless 150
6.2.2 Capillary M2M 152
6.2.3 Cellular M2M 154
6.3 M2M applications 156
6.4 M2M architectural standards bodies
- **6.4.1 ETSI M2M**
- **6.4.2 3GPP MTC**

6.5 M2M application in smart grid
- **6.5.1 M2M architecture**
- **6.5.2 Transmission and distribution networks**
- **6.5.3 End-user appliances**

6.6 Conclusion

7 Bad-data detection in smart grid: a distributed approach

7.1 Introduction

7.2 Distributed state estimation and bad-data processing: state-of-the-art
- **7.2.1 Wide-area state-estimation model**
- **7.2.2 Bad-data processing in state estimation**
- **7.2.3 Related work**

7.3 Fully distributed bad-data detection
- **7.3.1 Preliminaries**
- **7.3.2 Proposed algorithm for distributed bad-data detection**

7.4 Case study
- **7.4.1 Case 1**
- **7.4.2 Case 2**

7.5 Conclusion

8 Distributed state estimation: a learning-based framework

8.1 Introduction

8.2 Background

8.3 State estimation model

8.4 Learning-based state estimation
- **8.4.1 Geographical diversity**
- **8.4.2 Side information**
- **8.4.3 Weighted average estimation**
- **8.4.4 Estimation performance**

8.5 Conclusion

Part III Smart grid and wide-area networks

9 Networking technologies for wide-area measurement applications

9.1 Introduction

9.2 Components of a wide-area measurement system
- **9.2.1 PMU and PDC**
- **9.2.2 Hardware architecture**

© in this web service Cambridge University Press

www.cambridge.org
9.2.3 Software infrastructure
9.3 Communication networks for WAMS
9.3.1 Communication needs
9.3.2 Transmission medium
9.3.3 Communication protocols
9.4 WAMS applications
9.4.1 Power-system monitoring
9.4.2 Power-system protection
9.4.3 Power-system control
9.5 WAMS modelling and network simulations
9.5.1 Software introduction
9.5.2 System infrastructure modelling
9.5.3 Application classification
9.5.4 Monitoring simulation
9.5.5 Protection simulation
9.5.6 Control simulation
9.5.7 Hybrid simulation
9.6 Conclusion

10 Wireless networks for smart grid applications
10.1 Introduction
10.2 Smart grid application requirements
10.2.1 Application types
10.2.2 Quality-of-service (QoS) requirements
10.2.3 Classifying applications by QoS requirements
10.2.4 Traffic requirements
10.3 Network topologies
10.3.1 Communication actors
10.3.2 Connectivity
10.4 Deployment factors
10.4.1 Spectrum
10.4.2 Path-loss
10.4.3 Coverage
10.4.4 Capacity
10.4.5 Resilience
10.4.6 Security
10.4.7 Resource sharing
10.5 Performance metrics and tradeoffs
10.5.1 Coverage area
10.5.2 Capacity
10.5.3 Reliability
10.5.4 Latency
10.6 Conclusion
Part IV Sensor and actuator networks for smart grid

11 Wireless sensor networks for smart grid: research challenges and potential applications

11.1 Introduction
11.2 WSN-based smart grid applications
 11.2.1 Consumer side
 11.2.2 Transmission and distribution side
 11.2.3 Generation side
11.3 Research challenges for WSN-based smart grid applications
11.4 Conclusion

12 Sensor techniques and network protocols for smart grid

12.1 Introduction
12.2 Sensors and sensing principles
 12.2.1 Metering and power-quality sensors
 12.2.2 Power system status and health monitoring sensors
12.3 Communication protocols for smart grid
 12.3.1 MAC protocols
 12.3.2 Routing protocols
 12.3.3 Transport protocols
12.4 Challenges for WSN protocol design in smart grid
12.5 Conclusion

13 Potential methods for sensor and actuator networks for smart grid

13.1 Introduction
13.2 Energy and information flow in smart grid
13.3 SANET in smart grid
 13.3.1 Applications of SANET in SG
 13.3.2 Actors of SANET in smart grid
 13.3.3 Challenges for SANET in smart grid
13.4 Proposed mechanisms
 13.4.1 Pervasive service-oriented network (PERSON)
 13.4.2 Context-aware intelligent control
 13.4.3 Compressive sensing (CS)
 13.4.4 Device technologies
13.5 Home energy–management system – case study of SANET in SG
 13.5.1 Energy-management system
 13.5.2 EMS design and implementation
13.6 Conclusion

© in this web service Cambridge University Press
Contents

14 Implementation and performance evaluation of wireless sensor networks for smart grid

14.1 Introduction 324
14.2 Constrained protocol stack for smart grid 325
 14.2.1 IEEE 802.15.4 326
 14.2.2 IPv6 over low-power WPANs 327
 14.2.3 Routing protocol for low-power and lossy networks 328
 14.2.4 Constrained application protocol 331
 14.2.5 W3C efficient XML interchange 332
14.3 Implementation 332
 14.3.1 802.15.4 333
 14.3.2 6LoWPAN 333
 14.3.3 RPL 335
 14.3.4 CoAP 336
 14.3.5 EXI 339
14.4 Performance evaluation 339
 14.4.1 Link performance using IEEE 802.15.4 340
 14.4.2 Network throughput with 6LoWPAN 341
 14.4.3 Network throughput with RPL in multihop scenarios 343
 14.4.4 CoAP performance 345
 14.4.5 CoAP multihop performance 347
14.5 Conclusion 348

Part V Security in smart grid communications and networking

15 Cyber-attack impact analysis of smart grid 351
15.1 Introduction 353
15.2 Background 354
 15.2.1 Risk management 354
 15.2.2 Prior art 356
15.3 Cyber-attack impact analysis framework 356
 15.3.1 Graphs and dynamical systems 357
 15.3.2 Graph-based dynamical systems model synthesis 358
15.4 Case study 359
 15.4.1 13-node distribution test system 359
 15.4.2 Model synthesis 362
 15.4.3 Attack scenario 1 363
 15.4.4 Attack scenario 2 365
 15.4.5 Attack scenario 3 367
15.5 Conclusion 368
16 Jamming for manipulating the power market in smart grid

16.1 Introduction 373
16.2 Model of power market 375
16.3 Attack scheme 376
 16.3.1 Attack mechanism 376
 16.3.2 Analysis of the damage 379
16.4 Defence countermeasures 383
16.5 Conclusion 384

17 Power-system state-estimation security: attacks and protection schemes

17.1 Introduction 388
17.2 Power-system state estimation and stealth attacks 389
 17.2.1 Power network and measurement models 389
 17.2.2 State estimation and bad-data detection 391
 17.2.3 BDD and stealth attacks 392
17.3 Stealth attacks over a point-to-point SCADA network 393
 17.3.1 Minimum-cost stealth attacks: problem formulation 394
 17.3.2 Exact computation of minimum-cost stealth attacks 395
 17.3.3 Upper bound on the minimum cost 396
 17.3.4 Numerical results 398
17.4 Protection against attacks in a point-to-point SCADA network 400
 17.4.1 Perfect protection 400
 17.4.2 Non-perfect protection 401
 17.4.3 Numerical results 401
17.5 Stealth attacks over a routed SCADA network 403
 17.5.1 Measurement attack cost 404
 17.5.2 Substation attack impact 405
 17.5.3 Numerical results 406
17.6 Protection against stealth attacks for a routed SCADA network 407
 17.6.1 Single-path and multi-path routing 408
 17.6.2 Data authentication and protection 410
17.7 Conclusion 410

18 A hierarchical security architecture for smart grid

18.1 Introduction 413
18.2 Hierarchical architecture 415
 18.2.1 Physical layer 418
 18.2.2 Control layer 418
 18.2.3 Communication layer 419
 18.2.4 Network layer 419
 18.2.5 Supervisory layer 419
 18.2.6 Management layer 420
18.3 Robust and resilient control 420
Table of Contents

18.4 Secure network routing
- 18.4.1 Hierarchical routing 425
- 18.4.2 Centralized vs. decentralized architectures 427

18.5 Management of information security
- 18.5.1 Vulnerability management 429
- 18.5.2 User patching 430

18.6 Conclusion 434

19 Application-driven design for a secured smart grid

19.1 Introduction 439

19.2 Intrusion detection for advanced metering infrastructures
- 19.2.1 Smart meters and security issues 441
- 19.2.2 Architecture for situational awareness and monitoring solution 443
- 19.2.3 Enforcing security policies with specification-based IDS 445

19.3 Converged networks for SCADA systems 448
- 19.3.1 Requirements and challenges for convergence 449
- 19.3.2 Architecture with time-critical constraints 450

19.4 Design principles for authentication
- 19.4.1 Requirements and challenges in designing secure authentication protocols for smart grid 454
- 19.4.2 Design principles for authentication protocols 454
- 19.4.3 Use case: secure authentication supplement to DNP3 455

19.5 Conclusion 458

Part VI Field trials and deployments

20 Case studies and lessons learned from recent smart grid field trials

20.1 Introduction 465

20.2 Smart power grids
- 20.2.1 The Jeju smart grid testbed 465
- 20.2.2 ADS program for Hydro One 467
- 20.2.3 The SmartHouse project 469

20.3 Smart electricity systems 470

20.4 Smart consumers
- 20.4.1 PEPCO 472
- 20.4.2 Commonwealth Edison 473
- 20.4.3 Connecticut light and power 474
- 20.4.4 California statewide pricing pilot 474

20.5 Lessons learned 475

20.6 Conclusion 476

Index 478