Contents

Preface to the Second Edition page xix
Preface to the First Edition xxiii
Acknowledgments xxvii
List of Main Symbols xxxi

1 Introduction: A History of Helicopter Flight 1
1.1 Rising Vertically 1
1.2 Producing Thrust 4
1.3 Key Technical Problems in Attaining Vertical Flight 5
1.4 Early Thinking 6
1.5 The Hoppers 11
1.6 The First Hoverers 17
1.7 Not Quite a Helicopter 20
1.8 Engines: A Key Enabling Technology 23
1.9 On the Verge of Success 25
1.10 The First Successes 28
1.11 Toward Mass Production 33
1.12 Maturing Technology 40
1.13 Compounds, Tilt-Wings, and Tilt-Rotors 47
1.14 Chapter Review 49
1.15 Questions 50
Bibliography 51

2 Fundamentals of Rotor Aerodynamics 55
2.1 Introduction 55
2.2 Momentum Theory Analysis in Hovering Flight 58
2.2.1 Flow Near a Hovering Rotor 59
2.2.2 Conservation Laws of Aerodynamics 60
2.2.3 Application to a Hovering Rotor 61
2.3 Disk Loading and Power Loading 65
2.4 Induced Inflow Ratio 66
2.5 Thrust and Power Coefficients 66
2.6 Comparison of Theory with Measured Rotor Performance 68
2.7 Nonideal Effects on Rotor Performance 68
2.8 Figure of Merit 70
2.9 Estimating Nonideal Effects from Rotor Measurements 74
2.10 Induced Tip Loss 74
2.11 Rotor Solidity and Blade Loading Coefficient 77
2.12 Power Loading 80
2.13 Momentum Analysis in Axial Climb and Descent

2.13.1 Axial Climb

2.13.2 Axial Descent

2.13.3 Region between Hover and Windmill State

2.13.4 Power Required in Axial Climbing and Descending Flight

2.13.5 Four Working States of the Rotor in Axial Flight

2.13.6 Vortex Ring State

2.13.7 Autorotation

2.14 Momentum Analysis in Forward Flight

2.14.1 Induced Velocity in Forward Flight

2.14.2 Special Case, $\alpha = 0$

2.14.3 Numerical Solution to Inflow Equation

2.14.4 General Form of the Inflow Equation

2.14.5 Validity of the Inflow Equation

2.14.6 Rotor Power Requirements in Forward Flight

2.15 Other Applications of the Momentum Theory

2.15.1 Coaxial Rotor Systems

2.15.2 Tandem Rotor Systems

2.16 Chapter Review

2.17 Questions

3 Blade Element Analysis

3.1 Introduction

3.2 Blade Element Analysis in Hover and Axial Flight

3.2.1 Integrated Rotor Thrust and Power

3.2.2 Thrust Approximations

3.2.3 Torque–Power Approximations

3.2.4 Tip-Loss Factor

3.3 Blade Element Momentum Theory (BEMT)

3.3.1 Assumed Radial Distributions of Inflow on the Blades

3.3.2 Radial Inflow Equation

3.3.3 Ideal Twist

3.3.4 BEMT: Numerical Solution

3.3.5 Distributions of Inflow and Airloads

3.3.6 Effects of Swirl Velocity

3.3.7 The Optimum Hovering Rotor

3.3.8 Circulation Theory of Lift

3.3.9 Power Estimates for the Rotor

3.3.10 Prandtl’s Tip-Loss Function

3.3.11 Blade Design and Figure of Merit

3.3.12 BEMT in Climbing Flight

3.3.13 Further Comparisons of BEMT with Experiment

3.3.14 Compressibility Corrections to Rotor Performance

3.4 Equivalent Blade Chords and Weighted Solidity

3.4.1 Mean Wing Chords

3.4.2 Thrust Weighted Solidity

3.4.3 Power–Torque Weighted Solidity

3.4.4 Weighted Solidity of the Optimum Rotor
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.5</td>
<td>Weighted Solidities of Tapered Blades</td>
<td>154</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Mean Lift Coefficient</td>
<td>155</td>
</tr>
<tr>
<td>3.5</td>
<td>Blade Element Analysis in Forward Flight</td>
<td>156</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Determining Blade Forces</td>
<td>156</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Definition of the Approximate Induced Velocity Field</td>
<td>158</td>
</tr>
<tr>
<td>3.6</td>
<td>Chapter Review</td>
<td>166</td>
</tr>
<tr>
<td>3.7</td>
<td>Questions</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>169</td>
</tr>
<tr>
<td>4</td>
<td>Rotating Blade Motion</td>
<td>171</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>4.2</td>
<td>Types of Rotors</td>
<td>172</td>
</tr>
<tr>
<td>4.3</td>
<td>Equilibrium about the Flapping Hinge</td>
<td>174</td>
</tr>
<tr>
<td>4.4</td>
<td>Equilibrium about the Lead–Lag Hinge</td>
<td>176</td>
</tr>
<tr>
<td>4.5</td>
<td>Equation of Motion for a Flapping Blade</td>
<td>178</td>
</tr>
<tr>
<td>4.6</td>
<td>Physical Description of Blade Flapping</td>
<td>183</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Coning Angle</td>
<td>183</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Longitudinal Flapping Angle</td>
<td>183</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Lateral Flapping Angle</td>
<td>185</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Higher Harmonics of Blade Flapping</td>
<td>185</td>
</tr>
<tr>
<td>4.7</td>
<td>Dynamics of Blade Flapping with a Hinge Offset</td>
<td>186</td>
</tr>
<tr>
<td>4.8</td>
<td>Blade Feathering and the Swashplate</td>
<td>188</td>
</tr>
<tr>
<td>4.9</td>
<td>Review of Rotor Reference Axes</td>
<td>190</td>
</tr>
<tr>
<td>4.10</td>
<td>Dynamics of a Lagging Blade with a Hinge Offset</td>
<td>194</td>
</tr>
<tr>
<td>4.11</td>
<td>Coupled Flap–Lag Motion</td>
<td>196</td>
</tr>
<tr>
<td>4.12</td>
<td>Coupled Pitch–Flap Motion</td>
<td>198</td>
</tr>
<tr>
<td>4.13</td>
<td>Other Types of Rotors</td>
<td>199</td>
</tr>
<tr>
<td>4.13.1</td>
<td>Teetering Rotor</td>
<td>199</td>
</tr>
<tr>
<td>4.13.2</td>
<td>Semi-Rigid or Hingeless Rotors</td>
<td>200</td>
</tr>
<tr>
<td>4.14</td>
<td>Introduction to Rotor Trim</td>
<td>202</td>
</tr>
<tr>
<td>4.14.1</td>
<td>Equations for Free-Flight Trim</td>
<td>204</td>
</tr>
<tr>
<td>4.14.2</td>
<td>Typical Trim Solution Procedure for Level Flight</td>
<td>207</td>
</tr>
<tr>
<td>4.15</td>
<td>Chapter Review</td>
<td>209</td>
</tr>
<tr>
<td>4.16</td>
<td>Questions</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>211</td>
</tr>
<tr>
<td>5</td>
<td>Helicopter Performance</td>
<td>212</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>212</td>
</tr>
<tr>
<td>5.2</td>
<td>The International Standard Atmosphere</td>
<td>212</td>
</tr>
<tr>
<td>5.3</td>
<td>Hovering and Axial Climb Performance</td>
<td>215</td>
</tr>
<tr>
<td>5.4</td>
<td>Forward Flight Performance</td>
<td>217</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Induced Power</td>
<td>218</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Blade Profile Power</td>
<td>219</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Compressibility Losses and Tip Relief</td>
<td>220</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Reverse Flow</td>
<td>223</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Parasitic Power</td>
<td>225</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Climb Power</td>
<td>226</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Tail Rotor Power</td>
<td>226</td>
</tr>
<tr>
<td>5.4.8</td>
<td>Total Power</td>
<td>227</td>
</tr>
</tbody>
</table>
Contents

5.5 Performance Analysis
5.5.1 Effect of Gross Weight
5.5.2 Effect of Density Altitude
5.5.3 Lift-to-Drag Ratios
5.5.4 Climb Performance
5.5.5 Engine Fuel Consumption
5.5.6 Speed for Minimum Power
5.5.7 Speed for Maximum Range
5.5.8 Range–Payload and Endurance–Payload Relations
5.5.9 Maximum Altitude or Ceiling
5.5.10 Factors Affecting Maximum Attainable Forward Speed
5.5.11 Performance of Coaxial and Tandem Dual Rotor Systems
5.6 Autorotational Performance
5.6.1 Autorotation in Forward Flight
5.6.2 Height–Velocity (H–V) Curve
5.6.3 Autorotation Index
5.7 Vortex Ring State (VRS)
5.7.1 Quantification of VRS Effects
5.7.2 Implications of VRS on Flight Boundary
5.8 Ground Effect
5.8.1 Hovering Flight Near the Ground
5.8.2 Forward Flight Near the Ground
5.9 Performance in Maneuvering Flight
5.9.1 Steady Maneuvers
5.9.2 Transient Maneuvers
5.10 Factors Influencing Performance Degradation
5.11 Chapter Review
5.12 Questions

6 Aerodynamic Design of Helicopters
6.1 Introduction
6.2 Overall Design Requirements
6.3 Conceptual and Preliminary Design Processes
6.4 Design of the Main Rotor
6.4.1 Rotor Diameter
6.4.2 Tip Speed
6.4.3 Rotor Solidity
6.4.4 Number of Blades
6.4.5 Blade Twist
6.4.6 Blade Planform and Tip Shape
6.4.7 Airfoil Sections
6.5 Case Study: The BERP Rotor
6.6 Fuselage Aerodynamic Design Issues
6.6.1 Fuselage Drag
6.6.2 Vertical Drag and Download Penalty
6.6.3 Vertical Drag Recovery
6.6.4 Fuselage Side-Force

© in this web service Cambridge University Press
www.cambridge.org
Contents

6.7 Empennage Design 311
6.7.1 Horizontal Stabilizer 311
6.7.2 Vertical Stabilizer 312
6.8 Role of Wind Tunnels in Aerodynamic Design 313
6.9 Design of Tail Rotors 314
6.9.1 Physical Size 315
6.9.2 Thrust Requirements 315
6.9.3 Precessional Stall Issues 317
6.9.4 “Pushers” versus “Tractors” 318
6.9.5 Design Requirements 319
6.9.6 Representative Tail Rotor Designs 320
6.10 Other Anti-Torque Devices 321
6.10.1 Fan-in-Fin 321
6.10.2 NOTAR Design 324
6.11 High-Speed Rotorcraft 325
6.11.1 Compound Helicopters 325
6.11.2 Tilt-Rotors 327
6.11.3 Other High-Speed Concepts 328
6.12 Smart Rotor Systems 330
6.13 Human-Powered Helicopter 331
6.14 Hovering Micro Air Vehicles 334
6.15 Chapter Review 338
6.16 Questions 338
Bibliography 340

7 Aerodynamics of Rotor Airfoils 347
7.1 Introduction 347
7.2 Helicopter Rotor Airfoil Requirements 348
7.3 Reynolds Number and Mach Number Effects 350
7.3.1 Reynolds Number 350
7.3.2 Concept of the Boundary Layer 352
7.3.3 Mach Number 357
7.3.4 Model Rotor Similarity Parameters 359
7.4 Airfoil Shape Definition 360
7.5 Airfoil Pressure Distributions 363
7.5.1 Pressure Coefficient 363
7.5.2 Critical Pressure Coefficient 364
7.5.3 Synthesis of Chordwise Pressure 365
7.5.4 Measurements of Chordwise Pressure 366
7.6 Aerodynamics of a Representative Airfoil Section 368
7.6.1 Integration of Distributed Forces 368
7.6.2 Pressure Integration 370
7.6.3 Representative Force and Moment Results 371
7.7 Pitching Moment and Related Issues 374
7.7.1 Aerodynamic Center 375
7.7.2 Center of Pressure 377
7.7.3 Effect of Airfoil Shape on Pitching Moment 378
7.7.4 Use of Trailing Edge Tabs 381
7.7.5 Reflexed Airfoils 383
Contents

7.8 Drag 383
7.9 Maximum Lift and Stall Characteristics 385
7.9.1 Effects of Reynolds Number 389
7.9.2 Effects of Mach Number 392
7.10 Advanced Rotor Airfoil Design 398
7.11 Representing Static Airfoil Characteristics 401
7.11.1 Linear Aerodynamic Models 401
7.11.2 Nonlinear Aerodynamic Models 403
7.11.3 Table Look-Up 403
7.11.4 Direct Curve Fitting 403
7.11.5 Beddoes Method 404
7.11.6 High Angle of Attack Range 407
7.12 Circulation Controlled Airfoils 409
7.13 Very Low Reynolds Number Airfoil Characteristics 411
7.14 Effects of Damage on Airfoil Performance 412
7.15 Chapter Review 415
7.16 Questions 416
Bibliography 418

8 Unsteady Airfoil Behavior 423
8.1 Introduction 423
8.2 Sources of Unsteady Aerodynamic Loading 424
8.3 Concepts of the Blade Wake 424
8.4 Reduced Frequency and Reduced Time 427
8.5 Unsteady Attached Flow 428
8.6 Principles of Quasi-Steady Thin-Airfoil Theory 429
8.7 Theodorsen’s Theory 431
8.7.1 Pure Angle of Attack Oscillations 434
8.7.2 Pure Plunging Oscillations 436
8.7.3 Pitching Oscillations 438
8.8 The Returning Wake: Loewy’s Problem 441
8.9 Sinusoidal Gust: Sears’s Problem 442
8.10 Indicial Response: Wagner’s Problem 446
8.11 Sharp-Edged Gust: Küssner’s Problem 448
8.12 Traveling Sharp-Edged Gust: Miles’s Problem 450
8.13 Time-Varying Incident Velocity 453
8.14 General Application of the Indicial Response Method 457
8.14.1 Recurrence Solution to the Duhamel Integral 459
8.14.2 State-Space Solution for Arbitrary Motion 463
8.15 Indicial Method for Subsonic Compressible Flow 465
8.15.1 Approximations to the Indicial Response 467
8.15.2 Indicial Lift from Angle of Attack 469
8.15.3 Indicial Lift from Pitch Rate 470
8.15.4 Determination of Indicial Function Coefficients 471
8.15.5 Indicial Pitching Moment from Angle of Attack 474
8.15.6 Indicial Pitching Moment from Pitch Rate 474
8.15.7 Unsteady Axial Force and Airfoil Drag 476
8.15.8 State-Space Aerodynamic Model for Compressible Flow 478
8.15.9 Comparison with Experiment 480
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.16 Nonuniform Vertical Velocity Fields</td>
<td>483</td>
</tr>
<tr>
<td>8.16.1 Exact Subsonic Linear Theory</td>
<td>483</td>
</tr>
<tr>
<td>8.16.2 Approximations to the Sharp-Edged Gust Functions</td>
<td>484</td>
</tr>
<tr>
<td>8.16.3 Response to an Arbitrary Vertical Gust</td>
<td>487</td>
</tr>
<tr>
<td>8.16.4 Blade–Vortex Interaction (BVI) Problem</td>
<td>488</td>
</tr>
<tr>
<td>8.16.5 Convecting Vertical Gusts in Subsonic Flow</td>
<td>490</td>
</tr>
<tr>
<td>8.17 Time-Varying Incident Mach Number</td>
<td>492</td>
</tr>
<tr>
<td>8.18 Unsteady Aerodynamics of Flaps</td>
<td>492</td>
</tr>
<tr>
<td>8.18.1 Incompressible Flow Theory</td>
<td>493</td>
</tr>
<tr>
<td>8.18.2 Subsonic Flow Theory</td>
<td>497</td>
</tr>
<tr>
<td>8.18.3 Comparison with Measurements</td>
<td>500</td>
</tr>
<tr>
<td>8.19 Principles of Noise Produced by Unsteady Forces</td>
<td>502</td>
</tr>
<tr>
<td>8.19.1 Retarded Time and Source Time</td>
<td>504</td>
</tr>
<tr>
<td>8.19.2 Wave Tracing</td>
<td>505</td>
</tr>
<tr>
<td>8.19.3 Compactness</td>
<td>506</td>
</tr>
<tr>
<td>8.19.4 Trace or Phase Mach Number</td>
<td>507</td>
</tr>
<tr>
<td>8.19.5 Ffowcs-Williams–Hawkins Equation</td>
<td>508</td>
</tr>
<tr>
<td>8.19.6 BVI Acoustic Model Problem</td>
<td>510</td>
</tr>
<tr>
<td>8.19.7 Comparison of Aeroacoustic Methods</td>
<td>513</td>
</tr>
<tr>
<td>8.19.8 Methods of Rotor Noise Reduction</td>
<td>515</td>
</tr>
<tr>
<td>8.20 Chapter Review</td>
<td>516</td>
</tr>
<tr>
<td>8.21 Questions</td>
<td>517</td>
</tr>
<tr>
<td>Bibliography</td>
<td>519</td>
</tr>
<tr>
<td>9 Dynamic Stall</td>
<td>525</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>525</td>
</tr>
<tr>
<td>9.2 Flow Morphology of Dynamic Stall</td>
<td>527</td>
</tr>
<tr>
<td>9.3 Dynamic Stall in the Rotor Environment</td>
<td>529</td>
</tr>
<tr>
<td>9.4 Effects of Forcing Conditions on Dynamic Stall</td>
<td>531</td>
</tr>
<tr>
<td>9.5 Modeling of Dynamic Stall</td>
<td>535</td>
</tr>
<tr>
<td>9.5.1 Semi-Empirical Models of Dynamic Stall</td>
<td>536</td>
</tr>
<tr>
<td>9.5.2 Capabilities of Dynamic Stall Modeling</td>
<td>541</td>
</tr>
<tr>
<td>9.5.3 Future Modeling Goals with Semi-Empirical Models</td>
<td>543</td>
</tr>
<tr>
<td>9.6 Torsional Damping</td>
<td>545</td>
</tr>
<tr>
<td>9.7 Effects of Sweep Angle on Dynamic Stall</td>
<td>547</td>
</tr>
<tr>
<td>9.8 Effect of Airfoil Shape on Dynamic Stall</td>
<td>551</td>
</tr>
<tr>
<td>9.9 Three-Dimensional Effects on Dynamic Stall</td>
<td>553</td>
</tr>
<tr>
<td>9.10 Time-Varying Velocity Effects on Dynamic Stall</td>
<td>556</td>
</tr>
<tr>
<td>9.11 Prediction of In-Flight Airloads</td>
<td>557</td>
</tr>
<tr>
<td>9.12 Stall Control</td>
<td>559</td>
</tr>
<tr>
<td>9.13 Chapter Review</td>
<td>560</td>
</tr>
<tr>
<td>9.14 Questions</td>
<td>561</td>
</tr>
<tr>
<td>Bibliography</td>
<td>562</td>
</tr>
<tr>
<td>10 Rotor Wakes and Blade Tip Vortices</td>
<td>567</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>567</td>
</tr>
<tr>
<td>10.2 Flow Visualization Techniques</td>
<td>568</td>
</tr>
<tr>
<td>10.2.1 Natural Condensation Effects</td>
<td>568</td>
</tr>
<tr>
<td>10.2.2 Smoke Flow Visualization</td>
<td>569</td>
</tr>
<tr>
<td>10.2.3 Density Gradient Methods</td>
<td>570</td>
</tr>
</tbody>
</table>
Table of Contents

10.3 Characteristics of the Rotor Wake in Hover 572
10.3.1 General Features 572
10.3.2 Wake Geometry in Hover 573
10.4 Characteristics of the Rotor Wake in Forward Flight 575
10.4.1 Wake Boundaries 577
10.4.2 Blade–Vortex Interactions (BVIs) 578
10.5 Other Characteristics of Rotor Wakes 582
10.5.1 Periodicity versus Aperiodicity 582
10.5.2 Vortex Perturbations and Instabilities 582
10.6 Detailed Structure of the Tip Vortices 584
10.6.1 Velocity Field 585
10.6.2 Models for the Tip Vortex 586
10.6.3 Vorticity Diffusion Effects and Vortex Core Growth 592
10.6.4 Correlation of Rotor Tip Vortex Data 594
10.6.5 Flow Rotation Effects on Turbulence Inside Vortices 595
10.7 Vortex Models of the Rotor Wake 598
10.7.1 Biot–Savart Law 599
10.7.2 Vortex Segmentation 601
10.7.3 Governing Equations for the Convection Vortex Wake 602
10.7.4 Prescribed Wake Models for Hovering Flight 604
10.7.5 Prescribed Vortex Wake Models for Forward Flight 607
10.7.6 Free-Vortex Wake Analyses 614
10.8 Aperiodic Wake Developments 627
10.8.1 Wake Stability Analysis 627
10.8.2 Flow Visualization of Transient Wake Problems 630
10.8.3 Dynamic Inflow 631
10.8.4 Time-Marching Free-Vortex Wakes 633
10.8.5 Simulation of Carpenter & Friedovich Problem 633
10.9 General Dynamic Inflow Models 635
10.10 Descending Flight and the Vortex Ring State 638
10.11 Wake Developments in Maneuvering Flight 640
10.12 Chapter Review 645
10.13 Questions 646
Bibliography 647

11 Rotor–Airframe Interactional Aerodynamics 655
11.1 Introduction 655
11.2 Rotor–Fuselage Interactions 657
11.2.1 Effects of the Fuselage on Rotor Performance 658
11.2.2 Time-Averaged Effects on the Airframe 662
11.2.3 Unsteady Rotor–Fuselage Interactions 666
11.2.4 Fuselage Side-Forces 673
11.2.5 Modeling of Rotor–Fuselage Interactions 674
11.3 Rotor–Empennage Interactions 676
11.3.1 Airloads on the Horizontal Tail 679
11.3.2 Modeling of Rotor–Empennage Interactions 680
11.4 Rotor–Tail Rotor Interactions 682
11.5 Chapter Review 685
11.6 Questions 686
Bibliography 687
Contents

12 Autogiros and Gyroplanes 692
 12.1 Introduction 692
 12.2 The Curious Phenomenon of Autorotation 693
 12.3 Review of Autorotational Physics 694
 12.4 Rolling Rotors: The Dilemma of Asymmetric Lift 699
 12.5 Innovation of the Flapping and Lagging Hinges 700
 12.6 Prerotating the Rotor 701
 12.7 Autogiro Theory Meets Practice 702
 12.8 Vertical Flight Performance of the Autogiro 704
 12.9 Forward Flight Performance of the Autogiro 705
 12.10 Comparison of Autogiro Performance with the Helicopter 708
 12.11 Airfoils for Autogiros 709
 12.12 NACA Research on Autogiros 710
 12.13 Giving Better Control: Orientable Rotors 712
 12.14 Improving Performance: Jump and Towering Takeoffs 713
 12.15 Ground and Air Resonance 715
 12.16 Helicopters Eclipse Autogiros 716
 12.17 Renaissance of the Autogiro? 717
 12.18 Chapter Review 719
 12.19 Questions 720
Bibliography 720

13 Aerodynamics of Wind Turbines 723
 13.1 Introduction 723
 13.2 History of Wind Turbine Development 724
 13.3 Power in the Wind 726
 13.4 Momentum Theory Analysis for a Wind Turbine 727
 13.4.1 Power and Thrust Coefficients for a Wind Turbine 729
 13.4.2 Theoretical Maximum Efficiency 730
 13.5 Representative Power Curve for a Wind Turbine 731
 13.6 Elementary Wind Models 733
 13.7 Blade Element Model for the Wind Turbine 735
 13.8 Blade Element Momentum Theory for a Wind Turbine 738
 13.8.1 Effect of Number of Blades 742
 13.8.2 Effect of Viscous Drag 742
 13.8.3 Tip-Loss Effects 743
 13.8.4 Tip Losses and Other Viscous Losses 745
 13.8.5 Effects of Stall 747
 13.9 Airfoils for Wind Turbines 747
 13.10 Yawed Flow Operation 750
 13.11 Vortex Wake Considerations 751
 13.12 Unsteady Aerodynamic Effects on Wind Turbines 757
 13.12.1 Tower Shadow 760
 13.12.2 Dynamic Stall and Stall Delay 761
 13.13 Advanced Aerodynamic Modeling Requirements 763
 13.14 Chapter Review 764
 13.15 Questions 765
Bibliography 767
14 Computational Methods for Helicopter Aerodynamics 771

14.1 Introduction 771

14.2 Fundamental Governing Equations of Aerodynamics 772
14.2.1 Navier–Stokes Equations 773
14.2.2 Euler Equations 776

14.3 Vorticity Transport Equations 777

14.4 Vortex Methods 779

14.5 Boundary Layer Equations 780

14.6 Potential Equations 783

14.7 Surface Singularity Methods 783

14.8 Thin Airfoil Theory 786

14.9 Lifting-Line Blade Model 787

14.10 Applications of Advanced Computational Methods 790
14.10.1 Unsteady Airfoil Performance 790
14.10.2 Tip Vortex Formation 794
14.10.3 CFD Modeling of the Rotor Wake 797
14.10.4 Airframe Flows 798
14.10.5 Vibrations and Acoustics 801
14.10.6 Ground Effect 803
14.10.7 Vortex Ring State 803
14.11 Comprehensive Rotor Analyses 805
14.12 Chapter Review 808
14.13 Questions 809

Bibliography 810

Appendix 815

Index 817