SETTLING THE EARTH

In this worldwide survey, Clive Gamble explores the evolution of the human imagination, without which we would not have become a global species. He sets out to determine the cognitive and social bases for our imaginative capacity and traces the evidence back into deep human history. He argues that it was the imaginative ability to “go beyond” and to create societies where people lived apart yet stayed in touch that made us such effective world settlers. To make his case, Gamble brings together information from a wide range of disciplines: psychology, cognitive science, archaeology, palaeoanthropology, archaeogenetics, geography, quaternary science and anthropology. He presents a novel deep history that combines the archaeological evidence for fossil hominins with the selective forces of Pleistocene climate change, engages with the archaeogeneticists’ models for population dispersal and displacement, and ends with the Europeans’ rediscovery of the deep history settlement of the earth.

Clive Gamble is Professor of Archaeology at the University of Southampton and is one of the world’s leading authorities on the archaeology of early human societies. He is founder of the Centre for the Archaeology of Human Origins at the University of Southampton. Gamble has travelled extensively to see first-hand the evidence for social change from our earliest past, and most recently visited every continent while filming an acclaimed six-part documentary entitled Where Do We Come From? for the UK’s 5 network. He has held visiting positions at the Australian National University; the Museo de la Plata, Argentina; Boston University; and the universities of LaTrobe and Alaska. He is much sought after as a keynote speaker at international conferences and has been a frequent contributor to national radio. His many groundbreaking books include The Palaeolithic Settlement of Europe (1986); Timewalkers: The Prehistory of Global Colonisation (1993); The Palaeolithic Societies of Europe (1999), the 2000 winner of the Society of American Archaeology Book Award; Archaeology: The Basics (2001); and Origins and Revolutions: Hominin Identity in Earliest Prehistory (2007). In 2005, Gamble was awarded the Rivers Memorial Medal by the Royal Anthropological Institute in recognition of his outstanding contribution to the field, and in 2008, he won the Henry Stopes Medal from the Geologists’ Association. He was elected a Fellow of the British Academy in 2000.
Settling the Earth

The Archaeology of Deep Human History

CLIVE GAMBLE

University of Southampton
For Lewis Binford
Contents

List of boxes .. page viii

List of figures ix

List of tables xii

Acknowledgements xv

Glossary .. xvii

Web resources for skulls and stone tools xxi

1. The worlds of deep human history 1
2. The drivers of climate and environment: Terrae 0–2 32
3. The recent veneers of climate, environment and population: Terrae 3–5 75
4. Walking and running down the tectonic trail: Terrae 0–1 .. 108
5. Three strides across a bio-tidal world: Terra 2 141
6. Going beyond, keeping in touch: Terra 3 188
7. The call of the north: Terra 3 227
8. Eyes on the horizon: Terra 4 279
9. The human reunion in retrospect: Terra 5 310

Bibliography .. 323

Index .. 365
Boxes

1.1. Archives for deep and shallow history. page 5
2.1. Pleistocene climate curves 37
2.2. Why it pays to be versatile. 50
2.3. Modes of stone technology 64
3.1. Phylogeography and archaeogenetics 99
5.1. Pathways in hominin evolution during Terra 2 149
5.2. Long and short chronologies 164
6.1. Modern humans and behavioural modernity 192
6.2. Tracing human dispersals and archaeological evidence ... 215
6.3. The surprise in store on Flores 224
7.1. Is the Upper Palaeolithic fit for purpose? 229
7.2. The mammoth steppe 234
7.3. Dogs, gourds and domestication 237
8.1. Island biogeography and the five anomalous giants 282
8.2. Caribbean farming and fishing 306
Figures

1.1. The six Terrae .. page 7
1.2. The social brain map 18
1.3. Brains, concepts and tools 19
1.4. A map of the brain 24
2.1. Climate change during the last 4 Ma 35
2.2. Old World vegetation 36
2.3. Earth orbit, tilt and rotation 40
2.4. Deep-sea core stack LR04 41
2.5. Biodiversity hotspots 44
2.6. The tectonic trail 45
2.7. Variability package 2.5–1.2 Ma 52
2.8. Temperature and variability 54
2.9. Models of dispersal 60
2.10. Expensive tissue and human evolution 68
2.11. The social brain groups and encephalisation 69
2.12. Group sizes for extinct hominins 73
Box 2.1. Deep-sea core stratigraphy 37
Box 2.2. Variability selection 50
Box 2.3. Stone tool modes 65
3.1. Pole–equator–pole transects 77
3.2. Ocean currents 79
3.3. Greenland ice core and climate fluctuations 81
List of Figures

3.4. Sea levels in the last 20ka .. 82
3.5. Terra 3 at maximum sea-level fall 83
3.6. Effective Temperature zones 86
3.7. The geography of languages 90
3.8. Technological diversity and environment 93
3.10. The socioecology of primates, hominins and humans . 106
3.11. Growth and subsistence diets 107

Box 3.1. The mitochondrial horseshoe 101

4.1. Terrae 0 and 1 key sites, regions and hominins 109
4.2. Body weight and home range size 118
4.3. Carnivore and primate home range size 119
4.4. Geography of Miocene apes in Terra 0 122
4.5. Earliest stone tools in Africa 131
4.6. Isotopes and hominin diets 133
4.7. Macaques ... 138
4.8. Omnivores ... 140

5.1. Terra 2 key sites, regions and hominins 142
5.2. Five bio-tidal regions 153
5.3. The Green Sahara .. 157
5.4. Savannahstan .. 161
5.5. Composite tools ... 174
5.6. Timeline for modernity 181
5.7. Obsidian sources .. 185

Box 5.1. Two contemporary hominin skulls 150

6.1. Terra 3 key sites and regions 190
6.2. Tetradic kin structure 197
6.3. Coalescence models for population size 201
6.4. Routes to Sunda and Sahul 206
6.5. The timing for a Green Arabia 208
6.6. Sea levels during the last cold stage 209
6.7. Sunda savannah corridor 210
List of Figures

6.8. Southern dispersal route .. 223
7.1. Mammoths and humans .. 240
7.2. Humid corridor to Siberia 241
7.3. String of Pearls in South America 251
7.4. Neanderthal world ... 256
7.5. Bio-tidal Europe .. 258
7.6. Isotopes and diet ... 261
7.7. Effective Temperature in MIS3 262
7.8. Dates as data in Lateglacial Europe 265
7.9. Middle to Upper Palaeolithic transition 267
Box 7.2. Mammoth steppe .. 234
8.1. Terra 4 with key sites and regions 280
8.2. Target regions in the Pacific 284
8.3. The vaka Te-Au-O-Tonga 286
8.4. Strategies for sailing ... 288
8.5. Archaeogenetics of pigs ... 292
8.6. Coconuts and breadfruit ... 299
8.7. Voyaging tracks across the Indian Ocean 300
8.8. Target regions in the Caribbean 302
Box 8.2. Changes in diets in the Lesser Antilles 307
Tables

1.1. Five hominin Terrae .. page 8
1.2. Geological timescale .. 9
1.3. Four levels of intentionality 23
1.4. Mood, primary and social emotions 25
2.1. Terrae 2 and 3 and Milankovitch cycles 41
2.2. Transition points in Terrae 1 and 2 climates 42
2.3. Vocabulary for global settlement 56
2.4. Adaptive radiations .. 57
2.5. Key terms in biogeography and evolution 58
2.6. Health barriers to dispersal 61
2.7. Archaeological terminology 62
2.8. Three chronological movements 66
2.9. Personal networks size and structure 71
3.1. Pole–equator–pole environmental transects 78
3.2. Sea levels, Sunda and Sahul 83
3.3. FGH use of resources 87
3.4. Habitats and Effective Temperature 87
3.5. Accessible habitats for FGH 88
3.6. Food storage and Effective Temperature 89
3.7. Global population size in deep history 94
3.8. Population estimates Terrae 1–5 95
3.9. Population growth rates from coalescence data 96
List of Tables

3.10. Distance and kin dispersal ... 99
3.11. Environment and cultural selection 103
4.1. Co-evolution of the hominin bauplan 113
4.2. Hominid and hominin fossils 114
4.3. Hominin grades and adaptive radiations 115
4.4. Small-brained hominins home range 136
5.1. Three chronological strides in Terra 2 144
5.2. Terra 2 hominins .. 146
5.3. Encephalisation during Terra 2 151
5.4. Bio-tidal regions of Terra 2 155
5.5. Faunal exchanges .. 158
5.6. Stone tool chronology .. 162
5.7. Regional populations in Moviusland 169
5.8. The super sites of Terra 2 .. 171
5.9. Fire in Terra 2 ... 173
5.10. A map of emotions and material culture 176
5.11. Composite tools as social technology 180
5.12. Obsidian and land use ... 186
5.13. Obsidian and Effective Temperature 187
6.1. Molecular clock and target regions 202
6.2. Molecular clock estimates for haplogroups 204
7.1. Northern dispersal and Effective Temperature 232
7.2. Siberian FGH and Effective Temperature 233
7.3. Two styles of dispersal ... 252
7.4. Upper Palaeolithic changes in south-west France 254
7.5. Europe refuge areas ... 270
7.6. Western Europe population estimates 271
7.7. Archaeological evidence for dispersal 272
7.8. Events in the population history of Western Europe 273
8.1. Terra 3 centres of plant domestication 281
8.2. Crops in the Pacific ... 286
List of Tables

8.3. Polynesian triangle .. 294
8.4. Terra 4 islands of Africa. 297
8.5. Settlement of the Caribbean. 304
9.1. Rates of dispersal and displacement in Terrae 3–5 316
Writing a book about brains and global settlement has to be a cooperative enterprise. I was particularly fortunate in being assisted by Fiona Coward, Peter Morgan, Elaine Morris and James Cole in finding references, correcting mistakes, data digesting, discussing the issues, mapping and illustrating stone tools.

The circle of people that I need to thank for advice, information and argument is wide indeed: James Adovasio, Jim Allen, Nick Ashton, Geoff Bailey, Graeme Barker, Ofer Bar-Yosef, Anne Best, Bill Boismier, Luis Borrero, Ariane Burke, Richard Cosgrove, Iain Davidson, Robin Dennell, Rob Foley, Nena Galanidou, Nigel Goring-Morris, Chris Gosden, Bjarne Grønnov, Rob Hosfield, Geoff Irwin, Marta Lahr, Julia Lee-Thorp, Adrian Lister, Ian McNiven, Paul Mellars, David Meltzer, Steven Mithen, Clive Oppenheimer, Stephen Oppenheimer, Mike Petraglia, Gustavo Politis, Mark Pollard, Matt Pope, Martin Richards, John Robb, Stephen Shennan, Mike Smith, Chris Stringer, Mike Walker, Dustin White and David Yesner.

Participation in three projects helped to structure my excursion into deep history. The British Academy Centenary Project From Lucy to Language: The archaeology of the social brain proved immensely stimulating, as it brought evolutionary psychology together with archaeology and anthropology. My co-directors Robin Dunbar and John Gowlett and our steering committee of Garry Runciman, Wendy James and Ken Emond were most influential. While this book was being planned, I also led the NERC thematic programme Environmental factors and chronology in human evolution and dispersal (EFCHED). EFCHED had eleven projects that spanned the world and brought quaternary science and Palaeolithic archaeology together, several of which are reported here. My thanks to the NERC team and in particular Chris Franklin and Sally Palmer. Finally, the Radcliffe...
Seminar on deep history, hosted by Daniel Smail and Andrew Shryock, made me realise that prehistory had had its day.

During the writing of the book, I travelled from a Geography to an Archaeology Department.

At Royal Holloway, I owe a debt to colleagues who patiently answered quaternary questions, and from the Centre for Quaternary Research these include Simon Armitage, Simon Blockley, Ian Candy, Scott Elias, Rupert Housley, Rob Kemp, John Lowe, Jim Rose, Danielle Schreve and Tom Stevens, as well as Felix Driver, Vicky Elefanti, Hilary Geoghegan, Gil Marshall and Katie Willis. Ian Barnes answered questions about ancient DNA, while Matt Grove and Dora Moutsiou were both very generous in allowing me to use aspects of their doctoral research.

At Southampton, Helen Farr provided information about sea-level change, while William Davies, John McNabb and all the students in the Centre for the Archaeology of Human Origins added thoughts and information.

With great skill, Jenny Kynaston produced all the artwork at Royal Holloway, met every deadline and put up with constant tinkering. I thank her for her patience. Luane Hutchinson also showed remarkable expertise in editing the book for publication. Amber Johnson very kindly provided original data and maps from *Frames of Reference*.

I dedicate this book to Lewis Binford, friend and mentor since we first met in 1980. I'm only saddened that you are not here to see the result. You are much missed.
Glossary

Dates

C¹⁴ Radiocarbon dating. All radiocarbon ages in this book have been calibrated.
b₂k Before AD 2000, equivalent to BP (before present)
ka Thousand years ago b₂k, based on science-based dating such as C¹⁴ and OSL
Ma Million years ago, based on science-based dating such as K/Ar
OSL Optically stimulated thermoluminescence dating
K/Ar Potassium–argon dating
Molecular clock Estimates based on mutation and coalescent rates
ka molecular Indicates the basis of the age estimate

Climate

MIS Marine Isotope Stage, divisions based on oxygen isotope readings of O¹⁸ (heavy) and O¹⁶ (light) from foraminifera skeletons in deep-sea cores. Oceans enriched with O¹⁸ indicate small ice sheets.
Milankovitch cycles Predictable changes in the earth’s orbit (eccentricity), rotation (precession) and tilt (obliquity) that force climate change
Stadial Cold period, low sea level and ice advance
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstadial</td>
<td>Warmer interval during a stadial</td>
</tr>
<tr>
<td>Interglacial</td>
<td>Warm period with temperatures equal to or above today’s, high sea level</td>
</tr>
<tr>
<td>GS</td>
<td>Greenland stadial recognised in the ice cores</td>
</tr>
<tr>
<td>GI</td>
<td>Greenland interstadial</td>
</tr>
<tr>
<td>LGM</td>
<td>Last Glacial Maximum 25–18ka when ice sheets reached their greatest extent</td>
</tr>
<tr>
<td>Effective Temperature</td>
<td>A measure of productivity and the length of the growing season based on modern temperature, expressed in ET °C</td>
</tr>
<tr>
<td>Genetic</td>
<td>mtDNA Mitochondrial DNA: only inherited through the female line</td>
</tr>
<tr>
<td></td>
<td>MSY Male-specific segment of the Y chromosome: only inherited through the male line</td>
</tr>
<tr>
<td>HLA</td>
<td>A gene family which provides instructions for making a group of related proteins known as the human leukocyte antigen (HLA) complex. The HLA complex helps the immune system distinguish the body’s own proteins from proteins made by foreign invaders such as viruses and bacteria.</td>
</tr>
<tr>
<td>Ancient DNA</td>
<td>The extraction of DNA from dead rather than living organisms</td>
</tr>
<tr>
<td>Haplogroups</td>
<td>Branches of the mitochondrial DNA phylogenetic tree that consist of a collection of related haplotypes and where each haplotype represents a unique pattern of DNA substitutions (Haplo = single)</td>
</tr>
<tr>
<td>Clade</td>
<td>A branch on a phylogenetic lineage resulting from a split in an earlier lineage that formed two new taxa</td>
</tr>
<tr>
<td>Motif</td>
<td>A distinctive and usually recurrent genetic sequence found in a geographical area and used to distinguish populations and their migration histories</td>
</tr>
<tr>
<td>Effective population size</td>
<td>Refers to how many individuals actually contribute alleles to the next generation as opposed to the total number of individuals in a population</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalescence</td>
<td>When two genetic lineages find a common ancestor</td>
</tr>
<tr>
<td>Population bottleneck</td>
<td>Occurs when the size of a population is reduced for at least one generation. When the population is small, this can result in a faster reduction in genetic variation through the process of genetic drift. Such bottlenecks show up in mtDNA and MSY data.</td>
</tr>
</tbody>
</table>

Archaeology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGH</td>
<td>Fisher-gatherer-hunter; used to describe modern societies and those before the advent of farming</td>
</tr>
<tr>
<td>FACE</td>
<td>The social activities of Fragmentation, Accumulation, Consumption and Enchainment that result in patterns in archaeological data</td>
</tr>
<tr>
<td>Encephalisation</td>
<td>Growth in brain size</td>
</tr>
<tr>
<td>EQ</td>
<td>Encephalisation quotient that scales brain to body size</td>
</tr>
<tr>
<td>Mode</td>
<td>Five modes are recognised among stone tools based on techniques of manufacture and dominant artefact type</td>
</tr>
<tr>
<td>Technounit</td>
<td>A discrete component of an artefact. When all the technounits in an artefact are added up, it provides a measure of its complexity.</td>
</tr>
<tr>
<td>PCT</td>
<td>Prepared Core Technology; e.g. Victoria West, Levallois, Prismatic blade</td>
</tr>
<tr>
<td>LCT</td>
<td>Large Cutting Tools; stone picks, cleavers and bifaces</td>
</tr>
<tr>
<td>Biface</td>
<td>Any piece of stone worked on both faces; e.g. Acheulean hand axes, Clovis projectile points</td>
</tr>
<tr>
<td>Core</td>
<td>What remains after a stone nodule has been knapped</td>
</tr>
<tr>
<td>Flake</td>
<td>Less than twice as long as it is wide</td>
</tr>
<tr>
<td>Blade</td>
<td>Must be twice as long as it is wide</td>
</tr>
<tr>
<td>A-List, B-List</td>
<td>An alternative way to group archaeological classifications</td>
</tr>
<tr>
<td>IUP</td>
<td>Initial Upper Palaeolithic</td>
</tr>
</tbody>
</table>
Web resources for skulls and stone tools

These have been selected for the illustrations they contain of stone tools, fossil skulls and climate data that supplement the text figures. There are many more to explore, while search engines will enhance the glossary.

The online Encyclopedia of Quaternary Science (2013) edited by Scott Elias and frequently updated is an essential on-line resource for all things ice age, including hominins.

A comprehensive array of hominin skulls can be found at the Smithsonian Institution’s Human Origins Program. http://humanorigins.si.edu/evidence/human-fossils as well as some stone tools at its http://humanorigins.si.edu/evidence/behavior/tools.

Many images of Mode 2 artefacts from across Terra 2, and which bring home their variability, are at http://archaeologydataservice.ac.uk/archives/view/bifaces/index.cfm.

Old Stone Age.com has a range of resources in Old World Palaeolithic: http://www.oldstoneage.com/default.shtml.

For an interactive simulation of changing sea levels with a focus on Sunda and Sahul see Monash University’s Sahul-Time: http://sahultime.monash.edu.au/.