QUANTUM SOCIAL SCIENCE

Written by world experts in the foundations of quantum mechanics and its applications to social science, this book shows how elementary quantum mechanical principles can be applied to decision making paradoxes in psychology, and used in modeling information in finance and economics.

The book starts with a thorough overview of some of the salient differences between classical, statistical, and quantum mechanics. It presents arguments on why quantum mechanics can be applied outside of physics and defines quantum social science. The issue of the existence of quantum probabilistic effects in psychology, economics, and finance is addressed and basic questions and answers are provided. Aimed at researchers in economics and psychology, as well as physics, basic mathematical preliminaries and elementary concepts from quantum mechanics are defined in a self-contained way.

EMMANUEL HAVEN is a Professor at the School of Management, University of Leicester, UK. He has published numerous articles in a variety of fields, such as operations research, economics, and finance.

ANDREI KHRENNIKOV is a Professor of Applied Mathematics at Linnaeus University, Sweden, and Director of the International Centre for Mathematical Modelling in Physics, Engineering, Economics and Cognitive Science.
QUANTUM SOCIAL SCIENCE

EMMANUEL HAVEN
University of Leicester

AND

ANDREI KHRENNIKOV
Linnaeus University
To our lovely Wives – Irina and Sophie

To our lovely Children – Anton, Nath, and Sam
Contents

Foreword
Preface
Acknowledgements
List of symbols

I Physics concepts in social science? A discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Classical, statistical, and quantum mechanics: all in one</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Newtonian mechanics</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>The Hamiltonian formalism</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Statistical mechanics and the Liouville equation</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>The classical kingdom . . .</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>1.7</td>
<td>Classical fields</td>
<td>12</td>
</tr>
<tr>
<td>1.8</td>
<td>Reference</td>
<td>14</td>
</tr>
<tr>
<td>1.9</td>
<td>The Born–Sommerfeld quantization</td>
<td>14</td>
</tr>
<tr>
<td>1.10</td>
<td>Reference</td>
<td>17</td>
</tr>
<tr>
<td>1.11</td>
<td>Theory of quantum waves</td>
<td>17</td>
</tr>
<tr>
<td>1.12</td>
<td>References</td>
<td>18</td>
</tr>
<tr>
<td>1.13</td>
<td>Heisenberg’s symbolic calculus</td>
<td>18</td>
</tr>
<tr>
<td>1.14</td>
<td>Heisenbergian symbolism in physics: a version of symbolism in art</td>
<td>23</td>
</tr>
<tr>
<td>1.15</td>
<td>References</td>
<td>24</td>
</tr>
<tr>
<td>1.16</td>
<td>Completeness of quantum mechanics and a possibility to apply quantum mechanics outside of physics</td>
<td>24</td>
</tr>
<tr>
<td>1.17</td>
<td>References</td>
<td>28</td>
</tr>
<tr>
<td>1.18</td>
<td>Brownian motion</td>
<td>28</td>
</tr>
<tr>
<td>1.19</td>
<td>References</td>
<td>31</td>
</tr>
</tbody>
</table>
Contents

1.20 The Schrödinger equation 31
1.21 References 35
1.22 Do not be afraid of no-go theorems! 35
1.23 References 36

2 Econophysics: statistical physics and social science 37
2.1 Science and social science: econophysics? 37
2.2 References 40
2.3 The physics-based “Fokker–Planck” PDE in economics 40
2.4 References 41
2.5 Potential and kinetic energy in social science 41
2.6 References 42
2.7 The backward Kolmogorov PDE in finance 43
2.8 References 48
2.9 What a weird world! Martingales and fake probabilities 49
2.10 References 52
2.11 Whetting the quantum appetite 52
2.12 References 53

3 Quantum social science: a non-mathematical motivation 54
3.1 What is quantum social science? 54
3.2 Key findings from quantum social science 62
3.3 References 64

II Mathematics and physics preliminaries

4 Vector calculus and other mathematical preliminaries 71
4.1 Linear spaces 71
4.2 References 72
4.3 State space: Hilbert space 72
4.4 References 73
4.5 Operators 73
4.6 References 75
4.7 Dirac brakets and bras and kets 75
4.8 References 76
4.9 Eigenvalues/eigenfunction 77
4.10 References 77
4.11 Hermiticity 77
4.12 References 78
4.13 Projection operators 78
4.14 Probability density functions 79
4.15 References 79
Contents

4.16 ODEs and PDEs 79
4.17 References 80
4.18 Basics of stochastic mathematics, Brownian motion, non-arbitrage condition, Itô’s Lemma 80
4.19 References 82

5 Basic elements of quantum mechanics 84
5.1 Mathematical formalism of quantum mechanics: brief introduction 84
5.2 References 89
5.3 Double slit experiment: rationale for the existence of probability waves 90
5.4 References 92
5.5 Quantum mechanical postulates 92
5.6 References 94
5.7 States and state functions 95
5.8 References 95
5.9 Wave packets – constructive and destructive interference 96
5.10 References 96
5.11 Heisenberg’s uncertainty principle 96
5.12 References 97
5.13 The time-dependent and time-independent Schrödinger PDE 97
5.14 References 98
5.15 Classical limit ideas: Ehrenfest’s approach and the correspondence principle 98
5.16 References 100

6 Basic elements of Bohmian mechanics 102
6.1 Short introduction to Bohmian mechanics 102
6.2 References 103
6.3 Mathematical formalism 103
6.4 References 105
6.5 Non-locality 106
6.6 References 107
6.7 Criticisms of Bohmian mechanics 107
6.8 References 108

III Quantum probabilistic effects in psychology: basic questions and answers

7 A brief overview 113
7.1 Decision making in social science: general overview 113
Contents

7.2 References 116
7.3 Modeling risk: some basic approaches 117
7.4 References 120
7.5 Possible remedies to the paradox: a brief discussion 120
7.6 References 122
7.7 The role of the law of total probability (LTP): a brief overview 122
7.8 Reference 123

8 Interference effects in psychology – an introduction 124
8.1 Classical decision making and the Bayesian approach 124
8.2 References 125
8.3 Non-classical decision making: violation of the LTP (law of total probability) and the quantum Bayesian approach 125
8.4 Contextual probabilistic formalization 128
8.5 Interference effects in social science: decision making based on LTP with interference terms 132
8.6 Savage sure-thing principle 132
8.7 Behavioral games: Prisoner’s Dilemma 134
8.8 Violation of rationality in the experiments of Shafrir and Tversky 135
8.9 Prisoner’s dilemma-type experiment: Shafrir and Tversky 136
8.10 Violation of double stochasticity for matrices of transition probabilities 137
8.11 Prisoner’s dilemma-type experiment: Croson 138
8.12 Gambling experiment – 1: Tversky and Shafrir 139
8.13 Gambling experiment – 2: Tversky and Shafrir 141
8.14 The Hawaii vacation experiment 141
8.15 Non-classicality of statistical data: non-zero coefficients of interference 142
8.16 The constructive wave function approach and fit to data from the experiments of Shafrir and Tversky 144
8.17 Other experiments 145
8.18 References 152

9 A quantum-like model of decision making 155
9.1 Introduction 155
9.2 Two-player game and rational behavior 155
9.3 Construction of a mental state 156
9.4 A process of decision making 158
9.5 Example: decision making in PD 161
Appendix 1: Channels and liftings 162
Appendix 2: Quantum Markov chain description of data from experiments in cognitive psychology 163

9.6 References 170

IV Other quantum probabilistic effects in economics, finance, and brain sciences

10 Financial/economic theory in crisis 173
10.1 Relevance of the concepts of efficiency and non-arbitrage: a brief discussion 173
10.2 References 176
10.3 George Soros’ interpretation of the crisis and the use of classical quantum physics in finance 177
10.4 References 181
10.5 The need for an information modeling device in economics and finance 182
10.6 Reference 183

11 Bohmian mechanics in finance and economics 184
11.1 The pilot wave function and its uses outside of quantum mechanics 184
11.2 References 185

12 The Bohm–Vigier model and path simulation 186
12.1 The Bohm–Vigier model in finance 186
12.2 References 187
12.3 The Newton–Bohm equation: path simulation 187
12.4 Reference 191

13 Other applications to economic/financial theory 192
13.1 The (non-)Hermiticity of finance-based operators? 192
13.2 References 196
13.3 Implications of the non-Hermiticity of a Black–Scholes Hamiltonian operator on the use of the classical limit arguments 197
13.4 References 198
13.5 Implications of the non-Hermiticity of a Black–Scholes Hamiltonian operator on the stochastic equivalent of Hamilton–Jacobi equations 198
13.6 Interpretations of the wave function: a brief discussion 198
13.7 The wave function and non-observed state prices 200
13.8 Price and superposition of values 204
Contents

13.9 References 207
13.10 Arbitrage and negative probabilities 207
13.11 References 210
13.12 The Li–Zhang and WKB approach 211
13.13 References 214
13.14 The wave function as a Radon–Nikodym derivative 214
13.15 References 220
13.16 Universal Brownian motion: definition and discussion 220
13.17 References 222
13.18 Universal Brownian motion and option pricing 222
13.19 References 226
13.20 Wave functions in drift-dependent option pricing 226
13.21 References 227
13.22 Generalizations of Itô stochastics: path integration and other tools 227
13.23 References 228
13.24 q-calculus and finance 228
13.25 References 235

14 Neurophysiological sources of quantum-like processing in the brain 237
14.1 Introduction 237
14.2 Why could the brain use the quantum-like representation of information which is based on classical electromagnetic waves? 239
14.3 Prequantum classical statistical field theory: non-composite systems 242
14.4 Cognitive model: two regimes of brain’s functioning 246
14.5 Classical regime: time representation 250
14.6 Classical signal processing of mental images 252
14.7 Quantum-like processing of mental images 255
14.8 Composite systems 259
14.9 References 261

15 Conclusion 263

Glossary of mathematics, physics, and economics/finance terms 265
Index 274
Foreword

This new book by Emmanuel Haven and Andrei Khrennikov argues that information processing in social systems can to a degree be formalized with the mathematical apparatus of quantum mechanics. This is a novel approach. Understanding decision making is a central objective of economics and finance and the quantum like approach proposed here, is used as a tool to enrich the formalism of such decision making. Emmanuel and Andrei argue for instance that probability interference can be used to explain the violation of the law of total probability in well known paradoxes like the Ellsberg decision making paradox.

Emmanuel and Andrei’s book forms one of the very first contributions in a very novel area of research. I hope this book can open the road for many new books to come. More new results are needed, especially in the area of decision making.

H. Eugene Stanley
William Fairfield Warren Distinguished Professor;
Professor of Physics; Professor of Chemistry;
Professor of Biomedical Engineering;
Professor of Physiology (School of Medicine)
Director, Center for Polymer Studies,
Department of Physics, Boston University

By chance a few days before Andrei Khrennikov and Emmanuel Haven asked me to write this Foreword to their new book *Quantum Social Science*, I was browsing the collected works of Wolfgang Pauli, *Writings on Physics and Philosophy*, eds. Charles P. Enz and Karl von Meyenn, Springer (1994). I was just coming off a busy semester, including teaching a rather advanced course on harmonic analysis and quantum physics. To those erstwhile Ph.D. students in mathematics and physics, I had found myself counseling them with utterances such as “look, all physicists need to think semi-classically or even classically,” or “you have to do something, you cannot just say it is all random motion,” or “Heisenberg didn’t really understand mathematics, but his intuition was sufficient to guide him.”
Therefore I was very pleased to see Haven and Khrennikov also going to some of Pauli’s thoughts in their Preface. Pauli, one of the greatest thinkers on quantum mechanics, was often preoccupied with the interaction of experiment with observer, and in analogy with the interaction of the conscious with the unconscious. Pauli’s advocacy of the coupling of objective quantum physics to the subjective, e.g. psychic, was patterned upon Bohr’s fundamental notion of complementarity. Two mutually contradictory concepts, e.g. those of particle and wave, may co-exist.

Indeed, quantum mechanics has forced upon us a new reality, possessing many co-existing dualities. One has the Schrödinger picture of differential equations describing all the chemical elements upon which the universe depends, and the Heisenberg picture stressing more the probabilistic nature of scattering interactions. The two pictures were more or less reconciled by Born in 1926, with his concept of probability wave. I have reviewed the Born probability interpretation of quantum mechanics from its inception to the present in K. Gustafson, *The Born Rule*, AIP Proceedings 962 (2007) pp. 98–107. I detailed in that review how often the great pioneers of quantum theory had to resort to reasonings of classical physics. So one should not think that quantum mechanics is all “hocus-pocus.” Quantum mechanics is grounded in reality.

On the other hand, it is quite important to stress that the Born interpretation places the physics into an abstract configuration space, and not in real 3d space. As a consequence, from then on one must rely on the mathematics. Quantum mechanics has generated some very powerful mathematics. Ideally, this then should be coupled with new quantum-like thinking that one will not find in classical physics. It is the authors’ intention in the present book to apply these powerful new mathematical tools and the evolving new non-classical quantum intuition to social science, behavioral economics, decision theory, and financial engineering.

Both authors already have considerable experience in this endeavor. Andrei Khrennikov is the founder of the celebrated series of annual quantum physics conferences held in Växjö Sweden for the last dozen years. At those conferences Emmanuel Haven from the economics side has joined with Khrennikov in recent years to organize special sessions on the subject matter of this book. Khrennikov has previously put forth his thinking in two books, *Information Dynamics in Cognitive, Psychological and Anomalous Phenomena*, Kluwer (2004), and *Ubiquitous Quantum Structure: From Psychology to Finance*, Springer (2010). Haven brings to the present book more expertise in economics and finance.

Overall, one could describe their basic approach as that of embedding situations from the social or economic sciences into a quantum mechanical context and then using the methods of the latter to obtain new insights and results for the former.
Foreword

Such approach presumes of the reader a substantial knowledge of both contexts, that of quantum mechanics, and that of the particular social field of application. That is asking a lot.

I chose to address this issue, that of more needed interdisciplinary competence in education, science, and the general public, in my recent autobiography *The Crossing of Heaven: Memoirs of a Mathematician*, Springer (2012). I have come to the conclusion that we must invoke and enforce a new term, that of Multidisciplinarity. Interdisciplinarity is a weak word. It implies that one is less than one hundred percent committed to each of the two fields. Or that one is slightly weak in one’s own field and leaning on an expert from the other field, who is probably a bit weak also in his field. I have worked successfully in several fields of science and I can assure you that you should plan on becoming an expert also in “the other field,” and that will take you, say, at least five years before you have a chance of becoming competitive there.

Thus a collateral message of this foreword is that of advancing the concept and indeed the cause of creating more multidisciplinarity in our future mathematicians, physicists, social scientists, and, in a more general sense, throughout the educated public. A tall order! But great opportunities will open up to those who are strong enough.

This book by Haven and Khrennikov is a move in that direction, a pioneering effort.

Karl Gustafson

Professor Of Mathematics

University of Colorado at Boulder
Preface

The current level of specialization of knowledge in a variety of fields of inquiry may make it quite challenging for a researcher to be at the same time a “developer” and a “tester” of a theory. Although a theory can exist without a necessary clear and obvious practical end goal, the ultimate test of the validity of a theory (whether it is situated in the exact or social sciences) will always be how measurement can “confirm” or dislodge a theory.

This book is largely dedicated to the development of a theory. We will be the very first to accept the accusation that the duo “theory-test” is widely absent in this work, and we believe it necessary to make this statement at the very beginning.

This book is about a very counter-intuitive development. We want to use a physics machinery which is meant to explain sub-atomic behavior, in a setting which is at the near opposite end of the size spectrum, i.e. the world as we know and live it through our senses. We may know about the sub-atomic world, but we do not have human experience of the sub-atomic world. Do we have credible and provable stories which can explain how the sub-atomic engages into the mechanics of the statistical macro-world? Probably not. Why do we bother then about being so exotic? The interested reader will want us to provide for a satisfactory answer to this obvious question, and we want to leave it up to him or her to decide whether we have begun, via the medium of this book, to convince that the level of “exoticality” (and “yes” how exotic is that word?) is sensibly less than anticipated. We can possibly give a glimmer of “hope,” even at this early stage. Consider the words of one of the towering giants of physics of the twentieth century – Wolfgang Pauli. In an unpublished essay by Pauli, entitled “Modern examples of ‘background physics’,” which is reproduced in Meier* (pp. 179–196), we can read Pauli’s words (Meier* (p. 185)): “Complementarity in physics ... has a very close analogy with the terms ‘conscious’ and ‘unconscious’ in psychology in

that any ‘observation’ of unconscious contents entails fundamentally indefinable repercussions of the conscious on these very contents.” The words of Pauli are important. They show there is promise for a connection between “concepts” of utmost importance in two very different sciences: complementarity in quantum physics and “complementarity” between consciousness and unconsciousness in psychology.

In this book, we intend to give the reader a flavor of an intellectual development which has taken shape over several years via the usual media many academics use: conference presentations and academic articles. The theory presented here is nowhere complete but we strongly believe that it merits presentation in book form.

The models presented in this book can be called “quantum-like.” They do not have a direct relation to quantum physics. We emphasize that in our approach, the quantum-like behavior of human beings is not a consequence of quantum physical processes in the brain. Our basic premise is that information processing by complex social systems can be described by the mathematical apparatus of quantum mechanics. We present quantum-like models for the financial market, behavioral economics, and decision making.

Connecting exact science with social science is not an easy endeavor. What reveals to be most difficult is to dispel an intuition that somehow there should exist a natural bridge between physics and the modeling of social systems. This is a very delicate issue. As we have seen above it is possible to think of “complementarity” as a concept which could bridge physics and psychology. However, in some specific areas of social systems, the “physics equivalent” of the obtained results may have very little meaning.

It is our sincere hope that with this book we can convince the brave reader that the intuition of the authors is not merely naive, but instead informative. Hence, may we suggest that “reading on” is the command of the moment? Let the neurons fire!
Acknowledgements

Luigi Accardi and A. Khrennikov and M. Ohya (2009). Quantum Markov model for data from Shafir-Tversky experiments in cognitive psychology. *Open Systems & Information Dynamics*, 16(4), 378–383. This material is reproduced with permission of World Scientific Publishing Co Pte Ltd.

Emmanuel Haven (2008). The variation of financial arbitrage via the use of an information wave function. *International Journal of Theoretical Physics*, 47,
Acknowledgements

List of symbols

Some mathematics symbols used in the book

- \(\mathbb{R} \): space of real numbers
- \(\mathbb{C} \): space of complex numbers
- \(\rho(\ldots) \): probability density function (2 dimensional)
- \(\rho(t, \ldots) \): time-dependent probability density function
- \(L_2(\mathbb{R}^3) \): space of square integrable complex valued functions \(\psi : \mathbb{R}^3 \rightarrow \mathbb{C} \)
- \(H = L_2(\mathbb{R}^3) \): complex Hilbert space with a scalar product
- \(\text{l.i.m.} \): limit in the mean square sense
- \(\mathcal{P} = (\Omega, F, P) \): \(\mathcal{P} \) is a probability space and points \(\omega \) of \(\Omega \) (which is a non-empty set) are said to be elementary events. \(F \) is a so-called \(\sigma \)-algebra and \(P \) is a probability measure
- \(m.s. \): mean square
- \(\delta(x - x_0) \): Dirac \(\delta \)-“function”
- \(\mathbf{P}^{\text{bla}} \): matrix of transition probabilities
- \(d_q f(x) \): \(q \) differential of a function \(f(x) \)
- \(d_h f(x) \): \(h \) differential of a function \(f(x) \)

Some physics symbols used in the book

- \(m \): mass
- \(a \): acceleration
- \(f \): force acting on particle
- \(V \): real potential function
- \(\phi, S \): phase of a wave function
- \(\nu \): frequency
- \(t \): time
- \(\nabla V \): gradient of the real potential function

xxi
List of symbols

- p: momentum
- q: position
- $H(.,.)$: Hamiltonian function
- $\{f,g\}$: Poisson bracket of two functions f and g on an N particle phase space
- $\{f_1, f_2\}$: Poisson bracket for a pair of classical observables f_1, f_2
- $\phi(t,x,y,z)$: field state at instant t of vector with coordinates x, y and z
- $E(t,x,y,z)$: electrical field at instant t of vector with coordinates x, y and z
- $B(t,x,y,z)$: magnetic field at instant t of vector with coordinates x, y and z
- \hbar: Planck’s constant
- $\bar{\hbar}$: rationalized Planck constant
- $\Delta E_{ij} = E_i - E_j$: discrete portion of energy
- L: angular momentum of an electron
- I: intensity of the electromagnetic field
- $A = (a_{ij})$: Hermitian matrix
- \hat{H}: Hermitian matrix representing the energy observable (quantum Hamiltonian)
- \hat{q}: position operator
- \hat{p}: momentum operator
- σ_s: standard deviation of position
- σ_p: standard deviations of momentum
- Δq_i: Laplace operator
- $\psi(t,q)$: probability amplitude on time, t, and position, q
- Γ: phase space of hidden states
- $|\psi\rangle$: element of the Hilbert space H: a ket vector
- $\langle \phi|$: element of the dual space H^*, the space of linear continuous functionals on H: a bra vector
- $\langle \psi_1|\hat{w}\psi_2\rangle$: Dirac bra-ket, where ψ_1^* denotes the complex conjugate of ψ_1 and \hat{w} acts on the state function ψ_2.
- k: wave number
- $A(k)$: amplitude function of wave number k
- $\langle p \rangle$: average momentum
- Q: quantum potential
- $P(.|C)$: conditional probability dependent on the context, C
- D_+: mean forward derivative
- D_-: mean backward derivative

Some economics/finance symbols used in the book

- σ: volatility
- $\alpha(\sigma)$: drift function of volatility
- $\beta(\sigma)$: diffusion function of volatility
List of symbols

- dX, dz, dW: Wiener process
- $\vec{q} = (q_1, q_2 \ldots q_n)$: n-dimensional price vector
- m_j: number of shares of stock j
- $T_j(t)$: market capitalization of trader j at time t
- $V(q_1, \ldots, q_n)$: interactions between traders as well as interactions from other macro-economic factors
- Π: portfolio value
- F: financial option price
- S: stock price
- $\Delta = \frac{\partial F}{\partial S}$: delta of the option
- f_u, f_d: intrinsic values of the option when the price of the asset is respectively going up and down
- $E(r)$: expected return
- $\delta \Pi$: discrete change in the value of the portfolio, Π
- μ: expected return
- dF: infinitesimal change in F (the option price)
- r_f: risk free rate of interest
- $\phi(S, t)$: part of the premium invested in the stock, S
- S_T: asset price at the expiration of the option contract
- S_0: asset price at the inception of the option contract
- $P(\cdot)\ldots$: conditional probability distribution
- $E[S_T | I_t]$: conditional expectation of a stock price at time $T > t$, given the information you have at time t
- $E(e^{Yt\lambda})$: moment generating function, λ is some arbitrary parameter, and Y_t follows a probability density function (pdf) with mean μ_t and σ_t^2
- $E^\tilde{P}[\cdot]$: expectation with respect to a risk neutral probability measure \tilde{P}
- $E^P[\cdot]$: expectation with respect to a probability measure P
- C_t: option call value at time t
- P_t: option put value at time t
- $\Phi = (\Phi_1, \Phi_2, \ldots, \Phi_K)$: K-dimensional state price vector
- \vec{D}_1, \ldots, D_K: security price vector at time t_1, if the market is, respectively, in state 1, \ldots, K
- λ: Lagrangian multiplier
- $E(\mu(W))$: expected utility of wealth, W
- $>: $ preference relation
- \geq: weak preference relation
- β_i: CAPM - Beta of asset i