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Classical, statistical, and quantum mechanics: all in one

This chapter provides for a very short course on classical (Newtonian as well
as statistical) mechanics and quantum mechanics. Readers who have not been
trained in physics will be able to gain basic knowledge of the main physical
theories developed during the last 400 years, with the inclusion of some of the
interpretational problems of these theories.

1.1 Newtonian mechanics

We discuss one of Newton’s laws, namely Newton’s second law: “the product of
mass and acceleration is equal to the force” or in mathematical symbols:

ma = f. (L.1)

We state that m is the mass of a particle, a is its acceleration, and f is the force
acting on the particle.

Newton also introduced the notion of a continuous (infinitely divisible) physical
space which was used to describe the dynamics of a particle. Here we can also men-
tion the contribution of Leibniz. However, the rigorous mathematical formalization
of the real continuum was done much later, at the end of the nineteenth century.
Physical space was represented by the mathematical model R?, the Cartesian prod-
uct space R x R x R of three real lines. In this mathematical model, Newton’s
second law can be formalized in the following way. Let us introduce the following
notations. Let ¢ = (x, y, z), be a three-dimensional vector, where x, y, z are the
particle’s coordinates:

_d_q:<dx dy dz>

= _— =, — 1.2
v dt dt’ dt’ dt (1.2)
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4 Classical, statistical, and quantum mechanics: all in one

is the vector of velocity, and, finally:

_dv (dzx d?y dzz) (13)

a=—=\>55 "5 55

dt dr?’ dr?’ dt?

is the vector of acceleration. The dynamics of a particle, t — g () (its trajectory in
physical space), is described by the ordinary differential equation:

d*q(t)
dt?

To find the particle’s dynamics, we also have to know the initial conditions:

= f(t,q(1)). (1.4)

dq
q(to) = qo, v(fy) = Z(lo) = v, (1.5)

where gy and vy are respectively the particle’s position and velocity at the initial
instant of time ;.

An important class of forces is given by the so-called “conservative forces.”
We start with the one-dimensional model, a particle on the line: there is only one
coordinate x. We state that a force f(x) is called conservative if there exists a real
valued function V (x) (which is called the potential) such that:

dv

fx)= T (1.6)

The potential V (x) represents the potential energy of a particle (see for instance the
next chapter for the use of such potential in a social science setting). To illustrate
this notion, consider a basic example which also plays an important role in quantum
mechanics. The harmonic oscillator is a well-known object in classical mechanics.
The restoring force f which is proportional to the displacement of a particle from
its equilibrium position is:

f(x) = —kx, 1.7

where k is a positive constant. This is a conservative force with the potential
V(x) = kx?/2. This is the equation of the standard parabola indicating the fact that
the potential energy has its minimum at the point x = 0. Newton’s second law for
the system is:

d’x

Solving this ordinary differential equation, we find that the motion is described by
the function:

x(t) = Acos mrvt + @), (1.9
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1.1 Newtonian mechanics 5

where:

1 [k 1
V= —\ ) — = —. (1.10)
2V m T

Remark that v indicates the frequency expressed as the number of cycles per time
unit. Clearly, as is intuitive, the force constant k and the mass m influence this
frequency. The position x(¢) depends on this frequency v but also on the amplitude
A and phase ¢. They can be found from the system of equations:

Acos¢p = xg, Asing = —vy/2mv. (1.11)

In the case of a particle in the three-dimensional case, the force f is a vector
f = (fx, fy, f2)-Itis called conservative if there exists a (real) potential V(g), g =
(x,y,2), such that f, = —%—Z, fr= —%—‘V/ .= —%—‘Z/. We also recall the notion of
the gradient of a function V. This is a vector composed of its partial derivatives
and it is denoted as VV. Hence, a conservative force can be represented as the
“negative gradient” of the potential:

f=-VV. (1.12)

Although in this book we try to minimize mathematical details as much as
possible, we need to point out the theorem of the existence and uniqueness of the
solution of the equation (1.4) with the initial conditions (1.5). Such a problem, i.e.
an equation with initial conditions, is called the Cauchy problem. This is one of
the basic mathematical problems of classical mechanics. The simplest version of
the aforementioned theorem is that if the force is described by a smooth function
f, i.e. differentiable and with continuous derivative, and the derivative is bounded,
i.e. there exists a constant ¢ > 0 such that, for every g € R3, | f'(¢)| < c, then, for
any pair (g, Vo), a unique solution of the Cauchy problem exists (1.4), (1.5). This
mathematical theorem was the main source of the causal deterministic viewpoint
to classical mechanics: if we know the position and velocity of a particle at t = £y,
then we can find them at any instant of time r > 5 : g = q(¢), v = v(t) = %.

Consider the following quote by Laplace [1]:

We ought to regard the present state of the universe as the effect of its antecedent state and
as the cause of the state that is to follow. An intelligence knowing all the forces acting in
nature at a given instant, as well as the momentary positions of all things in the universe,
would be able to comprehend in one single formula the motions of the largest bodies
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6 Classical, statistical, and quantum mechanics: all in one

as well as the lightest atoms in the world; provided that its intellect were sufficiently
powerful to subject all data to analysis; to it nothing would be uncertain, the future as well
as the past would be present to its eyes.

Later interpretations of quantum mechanics also leave the theoretical possibility
of such a super intellect contested.

This is a good example of how pure mathematics generates fundamental philo-
sophic principles. As it often happens in science, it is not easy to change philosophic
principles which have been established on the basis of some special mathematical
results and models. During Laplace’s lifetime, the theory of differential equations
had not yet been well developed. Nowadays, it is well known that the Cauchy
problem (1.4), (1.5) may have a non-unique solution even for continuous forces.
If f is smooth, then the solution is unique only locally, i.e. for a small neighbor-
hood of the point (¢y, xo). However, globally it can be non-unique. Hence, modern
mathematics does not imply determinism even in classical mechanics (see [2] for
usage of this argument in classical non-deterministic biological dynamics). We
also remark that if the dynamics of a particle is even deterministic, but unstable,
then a small disturbance of initial conditions, can change crucially the trajectory
of such a particle. In such a case, although the principle of determinism is formally
valid, it has no usage in real practice, since it is impossible to determine initial
conditions with infinite precision. This argument against the uncontrollable usage
of the principle of determinism in classical mechanics was presented by Blohinzev
[3] in his comparison of classical and quantum mechanics. In conclusion, we can
see from the above that Laplace’s causal determinism is indeed a mere prejudice.

Besides Laplace’s prejudice, we can also mention the Kantian prejudice which
says that physical space has to be identified with its Euclidean model [4]. This
prejudice was based on two-thousand years of Euclidean geometry. The first blow
to the Kantian views of physical space was given by Lobachevsky. However,
the genius of Einstein was needed to establish modern views of the geometry of
physical space.

The above discussion raises a reasonable recommendation: the reader may want
to veer close to mathematics and instead steer away from general physical, meta-
physical, and philosophic principles.

1.2 References

[11 See http://plato.stanford.edu/entries/determinism-causal and the reference contained
therein, cited as: Laplace, P. S. (1820). Essai philosophique sur les probabilités forming
the introduction to his Théorie analytique des probabilités, Paris: V. Courcier repr.
Truscott, F. W. and Emory, F. L. (1951). A Philosophical Essay on Probabilities.
Dover, New York.
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1.3 The Hamiltonian formalism 7

[2] Conte, E., Federici, A., Khrennikov, A., and Zbilut, J. P. (2004). Is determinism the
basic rule in dynamics of biological matter? Proceedings of Quantum Theory: Recon-
sideration of Foundations. Series in Mathematical Modelling in Physics, Engineering
and Cognitive Science, 10, 639-678, Vixjo University Press, Sweden.

[3] Blochinzev, D. 1. (1976). Elementary Quantum Mechanics. Nauka, Moscow
(in Russian).

[4] Kant, I. (2008). The Critique of Pure Reason. Penguin Classics, London.

1.3 The Hamiltonian formalism

To proceed from classical to quantum mechanics, one typically uses the Hamilto-
nian formalism for the description of the motion of classical particles. As usual, let
us introduce the momentum p = mv of a particle and consider phase space with
coordinates (g, p), where ¢ is position. Points of the phase space are interpreted
as states of classical particles. We state again that, by Newton’s second law, to
determine the trajectory of a particle it is necessary to know both initial position
qo and the velocity vg. In particular, knowledge of only position is not sufficient.
Therefore, it is natural to define the particle’s state as the pair (g, v). By scaling the
velocity by the particle’s mass, we introduce its momentum, p, and equivalently
we represent the particle’s state as a pair (g, p).

We remark that the momentum’s definition can be expressed in the form of an
ordinary differential equation:

dg _p
—_— = 1.13
dt m (1.13)
Hence, Newton’s second law, (1.4), can be written as:
d dv
e (1.14)
dt dq
Let us introduce the following function on the phase space:
»?
Hg. p)= -+ V(q). (1.15)
m

H(.,.) is called the Hamiltonian function. This is the total energy of a particle
which moves ugder the action of the force induced by the potential V and the
kinetic energy f—m The system of equations (1.13), (1.14) can be written as:
dg 9OH dp  9IH
dt — dp’ dt  dq’
This is the system of Hamiltonian equations. It is easy to prove that the energy is
preserved in the process of motion:

H(q(1), p(1)) = H(q(to), p(10)). (1.17)

(1.16)
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8 Classical, statistical, and quantum mechanics: all in one

To prove this important fact (the law of energy conservation), it is sufficient to use
the basic rule for the differentiation of a composition of functions and then to apply
this rule to the system of Hamiltonian equations.

By using the Hamiltonian formalism, we can formulate a feature of classical
mechanics, which can be called locality. Let us consider a system consisting of N
particles with the three-dimensional coordinates ¢; = (x;, y;,z;),j=1,..., N
and corresponding momenta p;. The Hamiltonian function of a system of N

particles with masses m ; moving in the potential V(qj, ..., gy) has the form:
N2
Hg, p)=) =+ V), 1.18
(4. p) ;ij+ @) (1.18)
whereq = (q1,...,9n), p = (P1, ..., pn)- The above Hamiltonian gives the total

energy of this system composed of N particles. The system of Hamiltonian equa-
tions describing the dynamics of this composite system can be written as:

dq; _ 3M(q,p) dp; _ _9H(q,p) j

) =1,...,N. 1.19
dt apj dt 8qj ( )

Within the potential V, the interaction between different particles is described
by terms containing coordinates of a few particles. We can consider the interaction
between particles by writing for instance terms of the form g; ...qy (various
products of different coordinates). But let us consider now a potential which does
not contain interaction terms, V(g) = Vi(q1) + - - - + Vn(gn). The corresponding
system of Hamiltonian equations is:

dgj _ pj dpj _ 9V

R N A 1.20
At m; dr g’ (1-20)

This is a system of N-independent equations.

Hence, an important principle emerges from our discussion so far: Hamiltonian
mechanics is local, i.e. in the absence of interaction between particles, such parti-
cles move independently of each other.

We remark that non-local motion, as is the case with for instance Bohmian
mechanics (see Chapter 6), has the following (paradoxical from the viewpoint of
our classical intuition) feature. In the absence of interaction, even for V = 0, the
dynamics of different particles are dependent on each other. Changing the state of
one particle (¢;, p;) induces changing the states (¢;, p;), i # j, of other particles.
In the classical world, we have never seen such a behavior of physical systems.

Let us introduce a mathematical tool which has a key role in the Hamiltonian
formalism. The Poisson bracket of two functions on the N-particle phase space,
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1.4 Statistical mechanics and the Liouville equation 9

f(q, p), g(q, p), is defined as:

N

f(q. p)3g(q. ) _ 3f(q. p)3g(q. p)
(f.e1=>( - = ) a2y
=N dq; Op dp;  9q;
As an example, consider functions f(q, p) = g, g(q, p) = p;. Then:
{lgj»pi} =1 1{q;. p} =0,j #k. (1.22)
{gj,ac} =0, {p;, p} = 0. (1.23)
By using the Poisson bracket, we rewrite the system of Hamiltonian equations
as:
dq; dpj
— ={q;j — ={p; . 1.24
5, = Hy — = 1Ap M (1.24)

This form of the Hamiltonian dynamics will be used to proceed from classical
Hamiltonian mechanics to quantum mechanics.

1.4 Statistical mechanics and the Liouville equation

In studying the dynamics of an ensemble of a huge number, say N particles, the
presence of the system of Hamiltonian equations plays merely a methodologi-
cal role. From as early as the nineteenth century until the 1960s, it was simply
impossible to solve this system for large N and non-trivial potentials. Nowadays
in principle one can solve it numerically and obtain millions of trajectories in the
phase space. However, it is not clear how one can use or visualize the results of
such computations. Already in the nineteenth century it was proposed that instead
of studying the trajectories of individual particles, it would be better to consider
the probability to find a particle in some domain, say W, of the phase space. Such
an approach meant in effect a move away from the deterministic description of
mechanics to a statistical description. Hence, the name statistical mechanics was
coined to denote this particular area of study.

Let us consider the phase space of the system of N particles, R?V, with points
(g, p), where ¢ = (g1, .-.,9n), p = (p1, ..., py). What is the probability den-
sity function which indicates the probability to find the first particle at point q;
with momentum p;, the second particle at point ¢, with momentum p, ...,
the Nth particle at gy with momentum py? Since momenta are mass scalings
of velocities, the question can be reformulated as: “What is the probability den-
sity function of the first particle at point g; with velocity vy, the second parti-
cle at point g, with velocity v,, ..., the Nth particle at gy with velocity vy ?”
We state that mathematically a probability density is a function p(gq, p) which is
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10 Classical, statistical, and quantum mechanics: all in one

non-negative and normalized by 1:

/ p(q, p)dqdp = 1. (1.25)
R2N

The probability to find a particles at a point (g, p) from the domain W of the
phase space is calculated with the aid of the probability density function:

P((q.p) € W) = fW p(q. p)dadp. (1.26)

A fundamental problem now consists to describe the dynamics of the
(time-dependent) probability density, t — p(z, g, p). Fortunately, the Liouville
equation gives us the answer:

WD) = (H(q, p), p(t, q. )}, (1.27)
p(to, g, p) = po(q, p). (1.28)
Here, we remark:
=3 (L OOy (1.29)
dq; dp; op; 0q;

j=1

Hence, if the initial probability density function is known, then (by solving the
Liouville equation) we can find the density at any instant of time. We remark that
the usage of the probabilistic description of an ensemble of N particles does not
contradict the existence of the deterministic Hamiltonian dynamics.

We do not provide the formal derivation of the Liouville equation. Instead
of this, we present physical arguments which lie behind this equation. Consider
the probability density function on a trajectory (g(¢), p(¢)) in the phase space
p(t, q(t), p(t)). We calculate its total derivative with respect to time:

N
d 0 0p dqg; dp dp;
do _ % 5~ (00 da; | 90 dp;. (1.30)
di ot " = \dg; di " op; di

We now use the system of Hamiltonian equations (1.19) (this describes the trajec-
tory in the phase space) to express the time derivatives of coordinates and momenta
and obtain:

dp _9p | i <3_ﬂaH<q’p> _ 0p M, p)).

dt ot O an' 8pj 8pj 86]/'

Then the Liouville equation is equivalent to the following statement: the distribution

function is constant along any trajectory in phase space, i.e. ‘fi—’; =

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107012820
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107012820: 


