Index

Absorption, 181
Account balance diagram, 82
AC power distribution systems, 10, 306
Active power distribution nodes (APDNs), 61, 304, 319, 320, 321
Agent, 9, 338
Air mass ratio, 188
Alternative energy sources, 5
Arcing phase fuse blowing process, 324
Availability, 5, 23, 24, 26, 29, 41
Availability success diagrams, 31
Averaged impedance model of converters, 379
Average mode model, 146, 147, 148
Band gap, 188
Bargaining (cooperative) solution, 385
Bathtub curve, 25
Batteries, 7, 259
lead-acid, 259
lithium-ion, 259, 264
nickel-cadmium, 259, 265
nickel-metal hydride, 259, 266
Battery charging, 268
Battery cycling, 283
Battery life, 284
Battery management, 277
Behavioral model of controlled switches, 131
Bipolar junction transistor, 129
Black body radiation, 180
Boost converter, 141, 148
Brayton cycle, 237
Brushless permanent magnet generator, 173
Buck converter, 141, 147
Capacitor, 287
Capacity factor, 90, 91
Capital and installation cost, 89
Capital recovery factor, 90
Carnot cycle, 235
Cascade power distribution architecture, 318, 327
Cash flow diagram, 81, 82, 85, 87, 92
Cell balancing, 281
Cell equalization, 281
Cell unbalance, 278, 281
Centralized control, 337
Centralized power distribution architecture, 316
Compound interest rate, 85
Compression ignition engines, 245
Compression ratio, 244
Conduction band, 188
Congestion, 97, 101, 104
Constant-power loads, 10
Constant-power loads (CPLs), 326, 327, 328, 370
Controller, 8
Cost of capital, 90
Cost of electricity, 89, 95, 103
Cost parity, 103
coup de fouet, 262, 263
Current sharing, 337
Current shunt, 280
Current source inverters, 158
Cycle-life, 278, 283
Cycloconverter, 8
Data driven models, 110
DC currents interruption, 312
DC-DC converters, 8, 140
DC generator, 172
DC power distribution systems, 10, 306
Decentralized controller, 9, 338
Demand curve, 99, 100, 105
Dependence, 68
Depreciation, 84, 90, 91
Depth of discharge (DOD), 284
Diesel cycle, 246
Diffuse radiation, 182, 184
Diode, 126
Direct beam radiation, 182
Direct normal, 183
Distributed energy resources, 6
Distributed energy storage, 257
Distributed generators, 6, 257
Distributed power distribution architecture, 316, 318
Distributed resources, 257
Diversity, 42
Downtime cost, 89
dq transformation, 162
Droop control, 338, 340, 359
primary droop control, 339, 340
secondary droop control, 344
tertiary droop control, 344
Droop control in ac microgrids, 363
Droop control with batteries, 353
Droop control with dispatchable power sources, 361
Droop control with renewable energy sources, 348
Duplex power distribution architecture, 302
Duty cycle, 143, 160
Duty ratio, 143
Electrolysis, 225
Electromagnetic interference (EMI), 423
EMI filter, 424
Energy delivery profile, 257
Energy efficiency, 262
Energy Storage, 5
Enthalpy, 216
Entropy, 217, 236
Equivalent series resistance (ESR), 287, 288
Failure rate, 26
Fault detection and clearance (interruption), 322
Fault tolerance, 34, 41
Feed-in tariff, 104, 112
Fishbone diagram, 106, 107
Fixed charge rate, 90
Flywheels, 7, 291
Footprint, 54, 199
Fuel cell/electrolyzer, 286
Fuel cells, 7, 215
alkaline fuel cells (AFCs), 229
direct Methanol Fuel cell (DMFCs), 228
molten carbonate fuel cells (MCFCs), 230
phosphoric acid fuel cells (PAFC), 229
proton exchange membrane fuel cell (PEMFC), 215, 217, 226
solid oxide fuel cells (SOFC), 230
Fuse, 324
Game theoretic control, 377, 388
Gate turn-off thyristor, 128
Geometric control, 376
Giant magnetoresistance (GMR) sensors, 281
Gibbs free energy, 218
Grid-connected inverter, 403
Grid-connected operation, 394
Grid interconnection, 399
Grid parity, 95, 102, 103, 104
Grid reconnection, 410
Grid-tied inverter, 404
Grid-tied photovoltaic system, 20
Grid-tied PV inverter, 405, 425
Grounding, 412
Hall effect transducers, 281
Hazard function, 25
H-constant of a generator, 249
Heat capacity ratio, 239
Heat rate, 91
High-impedance fault, 310
Hydrogen production and storage, 224
Hysteresis control, 156
Ideal switch, 124
IEEE Standard 1366, 38
IEEE Standard 1547, 395, 396, 397, 398, 408, 410, 412, 413
Impedance-related instability, 380
Impedance source inverters, 159
Impedance translator model, 377
Induction machines, 174
Inflation, 84, 85, 87, 89, 93
Insulated gate bipolar transistor, 130
Interest rate, 84, 85, 87
Interfaces for fuel cells, 231
Interfaces for PV systems, 202
Interfaces for wind generators, 175
Internal combustion engines, 7, 241
Internal rate of return, 92
Inverter, 8
Inverters, 157
Islanded operation, 394, 408
Islanding detection, 413
Islanding operation transition, 409
Ladder power distribution architecture, 57, 304, 306
Ladder-type power distribution, 9
Levelized bus-bar cost, 94
Levelized cost of energy, 103
Life cycle cost, 92, 103
Lifeine, 7, 44, 68
Lifetime cost, 80
Limit cycle, 330
Linearization, 149
Line conditioning converter (LCC), 327
Line regulating converter (LRC), 327
Loan, 87, 94
Local area power and energy systems, 5
Locational marginal price, 97
Markov chain, 51
Markov Process, 27, 29
Maximum power point, 175, 192, 204, 206, 207, 208, 209, 210, 211, 212, 220
Maximum rotor efficiency, 175
Mean down time, 29
Mean time between failures, 29
Mean time to failure, 26
Mean up time, 29
Meshed power distribution architecture, 59, 304
Metal oxide semiconductor field effect transistor (MOSFET), 130
Microgrids, 5
Microgrid stability with constant-power loads, 370
Microgrid stability with linear loads, 369
Microturbines, 7, 232
Minimal cut sets, 31
Minimal cut states, 43
Modulation index, 160
Multiple-input converter, 59, 204, 211, 212
Multiple input converters, 151
Multiple-input Multiple-output (MIMO) power electronic interfaces, 304, 319, 320, 321
Multiple-input SEPIC, 212
Nash equilibrium, 377, 385, 386, 389
Nernst equation, 261
Net metering, 104
Net present value, 92
Noncooperative maximum power game, 383
Non-detection zone, 415
Operation and maintenance cost, 89, 95
Oscillating behavior, 330
Otto cycle, 242
Parallel fault, 310
Parallel power distribution architecture, 317
Park’s transformation, 251
Passivity-based design, 371
Peak parity, 102
Performance degradation, 50, 51
Permanent magnet, 173
Peukert’s effect, 262
Phase balancing, 411
Photoelectric effect, 185
Photovoltaic modules, 7
Photovoltaic (PV) cells, 179, 196
Photovoltaic (PV) power, 185
Players, 382
Point of common coupling (PCC), 138, 395, 397
Point-of-load converters, 10
Point-of-load (POL) converter, 327
Power conversion, 123
Power delivery profile, 257
Power distribution architectures, 301
Power electronic circuits, 7
Power electronic interfaces, 5
Power electronic switch, 124
Power factor, 133, 134, 155
Power factor correction, 155
Pre-arcing phase fuse blowing process, 324
Present value, 81, 84
Pressure ratio, 239
Pulse width modulation, 143, 160
PV cell behavioral model, 189
Radial power distribution architecture, 9, 57, 301, 306
Ragone chart, 257
Rate of return, 84, 92
Rectifier, 8, 131
Redundancy, 34, 42
Reflected radiation, 182, 184
Reliability, 5, 23, 24
Renewable energy sources, 5
Repairable system, 24
Repair rate, 27
Resilience, 67
Resilient power supply, 64
Retail parity, 102
Return on investment, 109
Reversible voltage, 219
Ring power distribution architecture, 9, 57, 306
Ring-type power distribution, 9, 303
Scattering, 181
Security, 5
Series fault, 310
Silicon-controlled rectifier (SCR), 128
Simple payback period, 91, 92
Single input dc-dc converters, 140
Single point of failure, 41
Six sigma, 106, 107
Small signal model, 149
Smart grids, 5, 427
Solar energy, 178
Solar irradiance, 182
Solar radiation spectrum, 181
Solid-state circuit breakers, 313, 314
Source players, 387
Space vector modulation, 161
Spark ignition engines, 242
Split-phase power distribution architecture, 303, 306
Spot market parity, 96, 99
Standby system, 24
State of charge (SoC), 278, 279
State of health, 278
Static switch, 400
Supply curve, 99, 101, 105
Switching function, 124, 143, 146, 160
Switching power loss, 126
Switching trajectory, 125
Synchronization, 410
Synchronous generator, 171, 246
Tafel equation, 219
Techno-economic analysis, 79, 106, 113
Temperature ratio, 239
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal runaway</td>
<td>278</td>
</tr>
<tr>
<td>Thyristor</td>
<td>128</td>
</tr>
<tr>
<td>Time-of-use rate structures</td>
<td>104</td>
</tr>
<tr>
<td>Tip-speed ratio</td>
<td>167</td>
</tr>
<tr>
<td>Total cost of ownership</td>
<td>81, 103, 112, 113</td>
</tr>
<tr>
<td>Total harmonic distortion</td>
<td>138</td>
</tr>
<tr>
<td>Total installed cost</td>
<td>90</td>
</tr>
<tr>
<td>Triode alternating current (TRIAC)</td>
<td>128</td>
</tr>
<tr>
<td>Ultracapacitors</td>
<td>7, 287</td>
</tr>
<tr>
<td>Unavailability</td>
<td>24</td>
</tr>
<tr>
<td>Unavailability calculation with energy storage</td>
<td>63</td>
</tr>
<tr>
<td>Unintentional islanding</td>
<td>412</td>
</tr>
<tr>
<td>Unreliability</td>
<td>23, 24</td>
</tr>
<tr>
<td>US Military Handbook 217 F</td>
<td>37</td>
</tr>
<tr>
<td>Value of money</td>
<td>84, 85</td>
</tr>
<tr>
<td>Voltage source inverters</td>
<td>158</td>
</tr>
<tr>
<td>Wind generators</td>
<td>7</td>
</tr>
<tr>
<td>Wind power</td>
<td>165</td>
</tr>
<tr>
<td>Wind turbine</td>
<td>165, 169</td>
</tr>
</tbody>
</table>