Contents

List of contributors
Preface

Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

1. Growth of III–V semiconductor quantum dots
 - *C. Schneider, S. Höfling and A. Forchel*
 - 1.1 Introduction
 - 1.2 Properties of semiconductor quantum dots
 - 1.3 Epitaxial growth of quantum dots on GaAs substrates
 - 1.4 Quantum dot growth on InP substrates
 - 1.5 Conclusion
 - References

2. Single semiconductor quantum dots in nanowires: growth, optics, and devices
 - *M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. P. A. M. Bakkers and V. Zwiller*
 - 2.1 Introduction
 - 2.2 Nanowire quantum dot growth
 - 2.3 Optical properties of nanowire quantum dots
 - 2.4 Nanowire quantum dot devices
 - References

3. Atomic-scale analysis of self-assembled quantum dots by cross-sectional scanning, tunneling microscopy, and atom probe tomography
 - *J. G. Keizer and P. M. Koenraad*
 - 3.1 Introduction
 - 3.2 Specimen preparation

© in this web service Cambridge University Press
www.cambridge.org
Contents

3.3 Quantum dot analysis by X-STM 42
3.4 Application to control of quantum dot formation 45
3.5 Outlook: atom probe tomography 55
3.6 Conclusion 58
References 58

Part II Manipulation of individual quantum states in quantum dots using optical techniques 61

4 Studies of the hole spin in self-assembled quantum dots using optical techniques
 B. D. Gerardot and R. J. Warburton 63
 4.1 Self-assembled quantum dots as host for spin qubits 63
 4.2 Motivating factors for hole spins 64
 4.3 Spectroscopy of few-level systems 67
 4.4 Hole spin sample design 69
 4.5 Spin initialization, manipulation, and read-out 73
 4.6 Strength of the hole hyperfine interaction 79
 4.7 Summary and outlook 80
Acknowledgements 80
References 81

5 Resonance fluorescence from a single quantum dot
 A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atatüre 86
 5.1 Introduction 86
 5.2 Resonance fluorescence from a two-level system 87
 5.3 Observation of resonance fluorescence 89
 5.4 Conclusion 100
References 101

6 Coherent control of quantum dot excitons using ultra-fast optical techniques: the role of acoustic phonons
 A. J. Ramsay and A. M. Fox 103
 6.1 Introduction 103
 6.2 Experimental methods 106
 6.3 Candidate mechanisms for the intensity damping 109
 6.4 Temperature-dependent measurements of Rabi rotations 110
 6.5 Model of LA-phonon induced dephasing 112
 6.6 Comparison of experiment to model 114
 6.7 Outlook 115
Acknowledgements 115
References 115
7 Holes in quantum dot molecules: structure, symmetry, and spin
M. F. Doty and J. I. Climente
7.1 Introduction 118
7.2 Growth and spectroscopic characterization of QDMs 119
7.3 Anticrossings and the formation of molecular states 120
7.4 Spin projections and Zeeman splitting 122
7.5 Antibonding molecular ground states 126
7.6 Hole-spin mixing 128
7.7 Summary 132
References 132

Part III Optical properties of quantum dots in photonic cavities and plasmon-coupled dots

8 Deterministic light–matter coupling with single quantum dots
P. Senellart
8.1 QDs in cavities: basics, motivation, first demonstrations 137
8.2 Determininistic coupling of a QD to a cavity 138
8.3 An ultrabright source of entangled photon pairs 144
8.4 Some perspectives 149
References 150

9 Quantum dots in photonic crystal cavities
A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vučković
9.1 Introduction 153
9.2 Quantum dots and photonic crystals 154
9.3 Experimental techniques 157
9.4 Probing the strong-coupling regime 161
9.5 Nonlinear optics at the single photon level 163
9.6 Applications and future directions 165
References 166

10 Photon statistics in quantum dot micropillar emission
M. Aßmann and M. Bayer
10.1 Introduction 169
10.2 Theoretical background 169
10.3 Experimental approaches 174
10.4 Experimental results 176
10.5 Summary and outlook 182
References 183

11 Nanoplasmonics with colloidal quantum dots
V. V. Temnov and U. Woggon
11.1 Introduction 185
Contents

11.2 Optical and electronic properties of colloidal semiconductor quantum dots ... 185
11.3 Surface plasmons in low-dimensional metallic nanostructures ... 188
11.4 Coupling of quantum dots to metal surfaces ... 191
11.5 Practical application: QD-based all-optical plasmonic modulator ... 196
11.6 Perspective: quantum optics with surface plasmons ... 197

References .. 197

<table>
<thead>
<tr>
<th>Part IV</th>
<th>Quantum dot nano-laboratory: magnetic ions and nuclear spins in a dot</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Dynamics and optical control of an individual Mn spin in a quantum dot</td>
</tr>
<tr>
<td>L. Besombes, C. Le Gall, H. Boukari and H. Mariette</td>
<td></td>
</tr>
</tbody>
</table>
| 12.1 | Introduction .. 205
| 12.2 | II–VI diluted magnetic semiconductor QDs 206
| 12.3 | Optical Mn spin orientation .. 208
| 12.4 | Resonant optical pumping of a single Mn spin 214
| 12.5 | Conclusion .. 218
| References | .. 218

13 Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom

O. Krebs and A. Lemaître

13.1 Introduction ... 221
13.2 The Mn acceptor impurity A^0 ... 222
13.3 Micro-photoluminescence setup in magnetic field 223
13.4 Zero-field signature of Mn doping 224
13.5 Energy levels for trions in zero field 225
13.6 Photoluminescence in a longitudinal magnetic field 227
13.7 Excitons versus trions ... 228
13.8 Coupling to dark states due to anisotropic exchange 230
13.9 Theoretical simulation of PL spectra 232
13.10 Conclusion ... 234
References .. 235

14 Nuclear spin effects in quantum dot optics

B. Urbaszek, B. Eble, T. Amand and X. Marie

14.1 Introduction ... 237
14.2 Carrier spin decoherence ... 242
14.3 Dynamic nuclear polarization ... 246
14.4 Perspectives ... 250
References .. 251
Contents

Part V Electron transport in quantum dots fabricated by lithographic techniques from III–V semiconductors and graphene 253

15 Electrically controlling single spin coherence in semiconductor nanostructures 255
 Y. Dovzhenko, K. Wang, M. D. Schroer and J. R. Petta 255
 15.1 Introduction 255
 15.2 Sample fabrication 256
 15.3 Measurement technology 258
 15.4 Quantum control 262
 15.5 Outlook 272
 Acknowledgements 273
 References 274

16 Theory of electron and nuclear spins in III–V semiconductor and carbon-based dots 277
 H. Ribeiro and G. Burkard 277
 16.1 The magnetic hyperfine Hamiltonian 277
 16.2 Nuclear – nuclear interactions 280
 16.3 Hyperfine interaction in semiconductor-based quantum dots 281
 16.4 Hyperfine interaction in carbon-based quantum dots 290
 References 292

17 Graphene quantum dots: transport experiments and local imaging 296
 17.1 Introduction 296
 17.2 Theoretical background 297
 17.3 Transport experiments 303
 17.4 Scanning-gate microscopy 308
 17.5 Summary and outlook 312
 References 313

Part VI Single dots for future telecommunications applications 317

18 Electrically operated entangled light sources based on quantum dots 319
 R. M. Stevenson, A. J. Bennett and A. J. Shields 319
 18.1 Introduction 319
 18.2 Electrically driven entangled light generation 322
 18.3 Electrical control of entangled light 326
 18.4 Interaction of entangled exciton–photon states with nuclei 331
 18.5 Conclusion 337
 References 337
Contents

19 Deterministic single quantum dot cavities at telecommunication wavelengths

D. Dalacu, K. Mnaymneh, J. Lapointe, G. C. Aers, P. J. Poole, R. L. Williams and S. Hughes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1 Introduction</td>
<td>341</td>
</tr>
<tr>
<td>19.2 Directed self-assembly</td>
<td>342</td>
</tr>
<tr>
<td>19.3 Spectroscopy of site-controlled single quantum dots</td>
<td>345</td>
</tr>
<tr>
<td>19.4 Integration of site-controlled quantum dots and cavities</td>
<td>347</td>
</tr>
<tr>
<td>19.5 Conclusion</td>
<td>352</td>
</tr>
<tr>
<td>References</td>
<td>353</td>
</tr>
</tbody>
</table>

Index

Page 356