Index

Airy stress functions
formulation of 60–1
  table of 426
alternator operator 419
Brown’s formula 255
Burgers equation 264–5
Christoffel stiffness tensor 34
“corresponding” elastic fields 25–7
curvature tensor, \( \kappa_{ij} \) 347
relationship to state of dislocation tensor,
\( \varpi_{ij} \) 347–8
cylindrical curvilinear coordinate system 411
defect core regions, description of 3–4
defect source of stress in homogeneous body,
interactions with stress
  force on defect by use of energy–momentum
tensor
    when applied stress 107
    when image stress 107
    when internal stress 107
  force on defect due to change in interaction
  energy when displaced
    basic formulation of 103
    when applied stress 112
    when image stress 112
    when internal stress 112
  force on defect due to change in total system
  energy when displaced
    basic formulation of 103
    when applied stress 108–9
    when image stress 110–11
  interaction energy of defect with image
  stress 100–2
  interaction energy of defect with imposed
  applied stress when
    defect represented by transformation strain
    99–100
    defect represented by its elastic field 98–9
    defect represented by point body forces 100
  interaction energy of defect with imposed
  internal stress when
  defect represented by a transformation
  strain 96–7
  defect represented by its elastic field 95–6
  defect represented by point body forces 97–8
  see also point defect, interaction with stress;
  dislocation, force on (due to stress);
  dislocation in finite region, image effects;
  inclusion, interaction with imposed stress
defects, classification of interactions with various
types of stress 93
defects, types considered in book 1
del operator \( \nabla \); basic relationships involving \( \nabla \)
expressed in cylindrical coordinates 411
  expressed in spherical coordinates 411–12
delta function, properties of 417–18
deviatoric stress and strain in isotropic system 427
dislocation–dislocation interactions
  force between
    loops 397
    rational differential segments 396–7
    straight segments 397
  force in isotropic system between
differential segments 398
  long straight parallel edge dislocations 409–10
  loops 398
  straight segments 398, 408–9
  interaction energy between
    loops 391
    rational differential segments 388–91
    straight non-parallel segments 392
  interaction energy in isotropic system between
  long straight parallel dislocations, 406–7
  loops 393–4, 407–8
  straight non-parallel segments 395–6
  straight parallel segments 395
  dislocation fan
    description of 325
    role as source of image stress 325
    stress field of 330
dislocation, force on (due to stress)
  force due to image stress 307–9
  forces on long straight edge and screw
dislocations 335–6
net force on loop 337
Peach–Koehler force equation 304–7, 336–7
dislocation, geometrical features of
   Burgers circuit 231
   FS/RH rule for 231
   SF/RH rule for 231
Burgers vector 229, 231
   edge component of 232
   screw component of 232
dislocation type 229–30
   mixed type 230
   edge type 229
   screw type 229
   left-handed 230
   right-handed 230
   cut and displacement rule 232
   cut surface 229
   unit normal vector to cut surface, $\hat{n}$ 229, 232
   direction of $\hat{n}$ rule 232
   unit tangent vector 229
dislocation in finite region, image effects
   infinitesimal loop near planar surface of isotropic half-space 334–5
   interaction with image stress, general formulation of force 307–9
   interaction energy 307
   loop near planar interface between dissimilar half-spaces 335
   loop near planar surface of half-space 333–4
   loop near planar surface of isotropic half-space 334
   straight long dislocation impinging on planar surface of half-space
   edge dislocation at normal incidence in isotropic system 332–3
   general inclined dislocation 325–31
   inclined dislocations in isotropic system 333
   screw dislocation at normal incidence in isotropic system 331–2
   straight long dislocation parallel to free surface
dislocation along axis of isotropic cylinder 315–17
   edge dislocation in isotropic half-space with planar surface 314–15, 338–9
   general dislocation in half-space with planar surface 309–12
   screw dislocation along axis of isotropic cylinder 313–14
   screw dislocation in isotropic half-space with planar surface 312–13
   straight long dislocation parallel to axis of isotropic cylinder 337–8
   straight long dislocation parallel to planar interface between dissimilar half-spaces
   edge dislocation in isotropic system 324
   general dislocation 317–23
   screw dislocation in isotropic system 323–4
   straight long screw dislocation parallel to surfaces of plate 338
   dislocation in interface
   see interfacial dislocation
   dislocation–inclusion interaction force exerted on dislocation by spherical inhomogeneous inclusion with $\epsilon^{\text{eff}} = \epsilon^{\delta_{ij}}$
in isotropic system 406
   general formulation of 405–6
   dislocation, production of (by cut and displacement) 229
   rule for directions of displacements at cut surface 232
   rule for direction of positive unit vector to cut surface 232
   dislocation loop, infinitesimal characterization of 260
   elastic field of 260–2
   elastic field of (in isotropic system) 268–9
   dislocation loop, smoothly curved elastic field of, by use of hairpin dislocations and Brown’s formula 252–7, 301
   infinitesimal loops 262
   modified Burgers equation 249–51
   Mura equation 247–9, 302–3
   rational differential dislocation segments 257–60
   Volterra equation 245–6
   strain energy of 263
   dislocation loop, smoothly curved in isotropic system
   elastic field of, by use of Burgers equation 264–5
   infinitesimal dislocation loops 268–9, 301
   multi-straight segment approximation 282
   Peach–Koehler equation 265–8
   strain energy of 270, 299–301
   dislocation–point defect interaction energy
   see point defect–dislocation interaction energy
   dislocation, segmented structure
   elastic field of
   angular dislocation 275
   planar dislocation node 274–5
   planar polygonal loop 275–7
   straight segment by use of Brown’s formula 271–2
   straight segment by use of Mura equation 272–4
   three-dimensional multi-segment structure 277–8
   strain energy of multi-segment structure 277–8
   dislocation, segmented structure in isotropic system
   elastic field of
   angular dislocation 282–3
### Index

- **dislocation, segmented structure in isotropic system (cont.)**
  - straight segment 279–82
  - three-dimensional multi-segment structure by use of triangular loops 283–7
  - strain energy of multi-segment structure 288–91
  - straight segment 287–8
- **dislocation, straight and infinitely long**
  - elastic field of (by use of integral formalism) 233–7
  - displacement field 236, 292
  - distortion field 236
  - stress field 236
  - traction on plane containing dislocation line and field point 237
  - elastic field of (by use of Volterra equation) 246–7
  - strain energy of (by use of integral formalism) 238–40
  - core energy parameter, \( a \) 240
  - strain energy factor 240
- **dislocation, straight and infinitely long in isotropic system**
  - elastic field of edge dislocation by use of Airy stress function 296
  - integral formalism in Cartesian, polar and cylindrical coordinates 240–1
  - Mura equation 294–5
  - straight segment 297–8
  - transformation strain formalism 242–3
  - Volterra equation 292, 293
  - elastic field of mixed dislocation 244
  - elastic field of screw dislocation by use of integral formalism in Cartesian, polar and cylindrical coordinates 243–4
  - transformation strain formalism 295–6
  - triangular loop 298–9
  - strain energy of edge dislocation 244, 298
  - mixed dislocation 244
  - screw dislocation 244
  - divergence (Gauss’s) theorem 413
- **elasticity, basic elements of linear theory of body force density distribution 18**
  - body forces 15, 18
  - “corresponding” elastic fields 25–7
  - deviatoric stress and strain 427
  - elastic compliance tensor 24
  - contracted notation for 24
  - for cubic crystal 24
  - relation to elastic stiffness tensor 24–5
  - symmetry of 24
  - transformation of components 24
  - elastic constants for isotropic system 27–9
  - bulk modulus 29
  - Lamé constants 28
  - Poisson’s ratio 28
  - shear modulus 28
  - Young’s modulus 29
  - elastic displacement 7
  - elastic distortion 7
  - elastic stiffness tensor 21
  - contracted notation for 23
  - for cubic crystal 23
  - relation to elastic compliance tensor 24–5
  - symmetry of 21–2, 23
  - transformation of components 22
  - elastic strain tensor 7
  - compatibility condition for 13–15
  - cubical dilatation 13
  - eigenvalues 11
  - eigenvectors 11
  - principal coordinate system for 10–12
  - principal directions 10
  - principal strains 10
  - strain ellipsoid 12–13
  - strains, normal 7
  - strains, shear 8
  - trace of 13
  - transformation of components 9–10
  - equilibrium, equation of 18
  - Hooke’s law, for general system 21, 24
  - isotropic system 27
  - incompatibility tensor 15
  - linear superposition, principle of 3
  - rigid body rotation 8–9
  - rotation matrix 8
  - rotation vector 8
  - strain energy general system 29–31
  - isotropic system 31
  - physical interpretation of 29–30
  - stress tensor 16
  - contracted notation for 23
  - normal stress 16
  - principal coordinate system for 20
  - shear stress 16
  - symmetry of 19
  - trace of 20
  - transformation of components 19–20
  - traction vector 15–17
  - elasticity, basic elements of linear theory of (when transformation strain present) 55–9
  - compatibility condition 57
  - planar elastic stiffness tensor 58–9, 63
  - relationship between Fourier amplitudes of transformation strain and associated stress 58
  - total displacement 57
total strain 57
see also elasticity theory for defects, basic methods of (for solving problems)
elasticity, selected equations of linear theory of (for isotropic medium)
expressed in cylindrical coordinates 421–2
expressed in spherical coordinates 423
elasticity theory for defects, basic methods of (for solving problems)
by use of Fourier transforms, when body forces present 34
transformation strains present 59
by use of Green’s functions, when body forces present 36
transformation strains present 59–60
by use of image stresses when interfaces present 61–3
by use of integral formalism when two-dimensional 38, 52–5
by use of sextic formalism when two-dimensional 38–52
by use of stress functions 60
Airy stress functions 60–1
by use of transformation strains 55–9
elasticity theories, types of linear 3
non-linear 4
size-dependent 4
clasto-mechanical energy, definition of 95
energy–momentum tensor 106
formulation of 103–6
“engineering” shear strain 8
equivalent homogeneous inclusion method for inhomogeneities 188–9
for inhomogeneous inclusions 126–8
Eshelby tensor for homogeneous ellipsoids of revolution in isotropic systems 424–5
needle 425
sphere 424
thin-disk 425
form of 123–4
form of (in isotropic system) 136–7
symmetry properties of 136–7
field point, description of 35
force multipole
elastic field of 210
elastic field of (in isotropic system) 208–10
force dipole moment tensor
force dipole moment approximation 210–11
forms for different crystal symmetry systems, table of 211–12
produced by body forces mimicking point defect 204–8
produced by surface tractions 225
relationship to corresponding force density distribution 212–13
force octopole moment tensor 204
force quadrupole moment tensor 204
effect of inversion symmetry 206
types of combinations of double forces 206
elementary double force 205
further examples 206–8
volume change due to 214
see also point defect
forces on defects
see defect source of stress in homogeneous body, interactions with stress; energy–momentum tensor; inhomogeneity, interaction with imposed stress
Fourier transform, definition of three-dimensional 420
two-dimensional 65
Fourier transform methods for determining elastic displacements 34, 59
for determining point force Green’s functions 66–9, 72–8
see also elasticity theory for defects, basic methods of (for solving problems)
Frank–Bilby equation
application of 351–2, 359–60, 373, 374, 381–2
derivation of 348–51
form of 351
Gauss’ (divergence) theorem
see divergence (Gauss’) theorem
Green’s function method for electrostatic problems 34–6
Green’s functions for unit point force in half-space joined to dissimilar half-space 75–8
half-space joined to dissimilar half-space in isotropic system 85
half-space with planar interface 72–5
half-space with planar interface in isotropic system 86–7
infinite isotropic region 85–6, 88–9
infinite region 66–9, 89–90
basic equation for 36–7
Fourier transform of 37
spatial derivatives of 70–2, 91–2
see also elasticity theory for defects, basic methods of (for solving problems)
hairpin dislocation
description of 252
stress field of 252
harmonic function, definition of 81
hetero-elastic interface
see interface, hetero-elastic
Index

image stresses, basic method of 61–3
impotent dislocation array 352
inclusion, characterization of 116–17
inclusion, coherent → incoherent transition of
inhomogeneous inclusion with uniform
$\epsilon_d^i$ in isotropic system
results for ellipsoidal inclusion 149–51
treatment of 147–9
inclusion–dislocation interaction force
see dislocation–inclusion interaction force
inclusion, elastic field in isotropic system when
coherent, homogeneous, arbitrary shape,
uniform $\epsilon_d^i$ 130–3, 153
coherent, homogeneous, ellipsoidal, uniform $\epsilon_d^i$
133–40, 155
coherent, homogeneous, spherical, $\epsilon_d^i = \delta_{ij}T$, 151–2
coherent, inhomogeneous,
elipsoidal, uniform $\epsilon_d^i$ 140–1
spherical, $\epsilon_d^i = \delta_{ij}T$ 141–2, 155–7
incoherent, inhomogeneous, ellipsoidal,
uniform $\epsilon_d^i$
needle 150
sphere 149–50
thin-disk 150, 158
inclusion, elastic field of (when coherent and
homogeneous)
arbitrary shape and $\epsilon_d^i$ 118–19
ellipsoidal, arbitrary $\epsilon_d^i$ 119–22
ellipsoidal, non-uniform $\epsilon_d^i$ represented by
polynomial 124–6
ellipsoidal, uniform $\epsilon_d^i$ 123–4
inclusion, elastic field of (when coherent and
inhomogeneous)
ellipsoidal, non-uniform $\epsilon_d^i$ represented by
polynomial 128
ellipsoidal, uniform $\epsilon_d^i$ 126–8
inclusion in finite region, image effects
elastic field and force when homogeneous
arbitrary shape, uniform $\epsilon_d^i$, near
interface 174–5
spherical, $\epsilon_d^i = \delta_{ij}e^T$, isotropic system, near
interface 177–8, 180–1
image field when homogeneous, spherical,
$\epsilon_d^i = \delta_{ij}e^T$, isotropic system, far from
interface 171–2
image force when homogeneous 175–7
strain energy of 179, 184–5
volume change due to image field 172–4, 180,
182–3, 185–6
inclusion–inclusion interaction energy
between homogeneous inclusions 399–401
between inhomogeneous inclusions 401
inclusion, interaction with imposed stress
inhomogeneous case
force when spherical, $\epsilon_d^i = \delta_{ij}e^T$, isotropic
system 160–2, 167
interaction energy 159–60, 167–8
inhomogeneous and ellipsoidal case
interaction energy and force when spherical,
$\epsilon_d^i = \delta_{ij}e^T$, isotropic system 165–6, 168–9
interaction energy, formulation of 163–5
perturbation of imposed stress field 163,
169–70
inclusion, model for point defect 213
inclusion–point defect interaction energy
between point defect and spherical
inhomogeneous inclusion with $\epsilon_d^i = e^T\delta_{ij}$
in isotropic system 405
general formulation of 404
inclusion, strain energy when
cohercet, homogeneous, ellipsoidal, $\epsilon_d^i = e^T\delta_{ij}$,
isotropic system 154–5
cohercet, homogeneous, ellipsoidal, uniform
$\epsilon_d^i$, isotropic system
needle 143
sphere 143
thin-disk 143
coherent, homogeneous or inhomogeneous,
arbitrary shape and $\epsilon_d^i$ 128–9, 153–4
coherent, inhomogeneous, ellipsoidal,
$\epsilon_d^i = e^T\delta_{ij}$, isotropic system
sphere 144, 157
thin-disk 144–5
coherent, inhomogeneous, ellipsoidal,
uniform $\epsilon_d^i$, isotropic system
needle 150
sphere 149–50
thin-disk 150, 158
inhomogeneity, interaction with imposed stress
force, when
non-uniform inhomogeneity and imposed
stress 196–8
uniform spherical inhomogeneity and
hydrostatic stress 195–6
force, basic formulation when
attributed to change in interaction
energy 113
attributed to change in total system
energy 113
obtained by use of energy-momentum
tensor 113–14
interaction energy
basic formulation of 113
when uniform ellipsoidal inhomogeneity
and imposed stress 189–92
when uniform ellipsoidal inhomogeneity
and imposed stress in isotropic
system 193–4
when uniform spherical inhomogeneity and hydrostatic stress 194, 200
perturbation of imposed stress, when uniform ellipsoidal inhomogeneity and imposed stress 188–9
uniform ellipsoidal inhomogeneity and imposed stress in isotropic system 192–3
uniform spherical inhomogeneity and hydrostatic stress 198–200
integral formalism for two-dimensional elasticity problems 52–5
[Q], [S] and [B] matrices 52–4
[Q], [S] and [B] matrices for isotropic system 54–5
interaction strain energy between internal and external stress 99
interface, force on “energy–momentum tensor” force 378–80
“interfacial dislocation” force 378
when heterophase interface 384–5
when large-angle homophase interface 383–4
when small-angle asymmetric tilt interface 377–8, 381–3, 385
when small-angle symmetric tilt interface 377–8, 380–1
interface, hetero-elastic elastic field of, when array of parallel dislocations in interface 370–3
array of parallel dislocations in interface, isotropic system 362–6
single dislocation in interface 366–9
single dislocation in interface (isotropic system) 360–2
strain energy of single dislocation in interface 369–70
interface, iso-elastic elastic field when array of parallel dislocations in interface 353–5
array of parallel dislocations in interface, isotropic system 355–7
strain energy (interface energy) when array of parallel dislocations in interface, isotropic system 357–8
interfaces, classification and description of geometrical features macroscopic degrees of freedom 341
procedure for creating planar interface in bicrystal 341, 342, 374–5
hetero-elastic definition of 340
epitaxial type 359
heterophase interface 341
homophase 341
iso-elastic definition of 340
large-angle homophase (vicinal) 343–5
small-angle homophase (tilt, twist, and mixed) 342–3
interfacial dislocation elastic field of 360–2, 366–9
strain energy of 369–70
terminology disconnection 383
dislocation with step character 383
transformation dislocation 383
iso-elastic interface see interfaces, iso-elastic
lambda tensor, \( \lambda \) 221–2
line of force, straight and infinitely long displacement field of 238
displacement field of (in isotropic system) 365, 376
distortion field of 238
modified Burgers equation 249–51
Mura equation 248
Navier equation 33
nuclie of strain 269
Papkovitch functions for point force in half-space joined to dissimilar half-space in isotropic system point force normal to interface 80–4
point force parallel to interface 84
for point force in half-space with planar surface 86
for point force in infinite homogeneous body 85
general formulation of 79–80
Peach–Koehler equations for force on dislocation 306, 336–7
for stress field of dislocation loop 267–8
planar elastic stiffness tensor 58–9, 63
point defect force multipole model for 203–5
small inclusion model for 213
structure and symmetry of 201–3
inversion symmetry 206
see also force multipole
point defect–dislocation interaction energy between point defect and screw dislocation in isotropic system 402–4
general formulation of 401–2
point defect–inclusion interaction energy see inclusion–point defect interaction energy point defect, interaction with stress force 216–17
interaction energy 215–16
see also defect source of stress in homogeneous body, interactions with stress
point defect–point defect interaction energy between two point defects in isotropic system 387–8
general formulation of 386–7
point defects in finite bodies, image effects for single point defect
volume change of body 217–18, 224–7
for statistically uniform distribution of point defects
induced shape change of body 221–2, 227, 228
induced stress and volume change of body 218–21
\( \mathbf{a}^{(p)} \) tensor
Vegard’s law
polynomial theorem for coherent ellipsoidal inclusion with polynomial transformation strain 126, 128, 152–3
potentials
biharmonic 130
harmonic (of layer) 138
Newtonian 130
at external points around ellipsoid 139
at external points around sphere 142
at interior points in sphere 178
rational differential dislocation segment geometrical characterization of 257 stress field of 260
sextic formalism for two-dimensional problems 38–52
coordinate systems used 38
sextic eigenvalue problem 39
eigenvalues 39–40
eigenvectors 40
Stroh vectors 40
completeness of 45–6
invariance of 46–9
normalization of 40
orthogonality of 43–5
sum rules for 49–50
source point, description of 35
stress curvilinear coordinate system 411
Stokes’ theorem 413–15
stress functions 60
see also Airy stress functions
stress, types of
applied 93
canceling 56
deviatoric 427
image 61–3
imposed 93
internal 93
St.-Venant’s principle 31
“state of dislocation tensor”, \( \mathbf{a} \), 345–6
relationship to curvature tensor 347–8
surface dislocation 352
tensor product of two vectors 416
transformation strain
description of 56
procedure for creation of 56
see also elasticity, basic elements of linear theory of (when transformation strain present); elasticity theory for defects, basic methods of (for solving problems)
vector field
irrotational 79
solenoidal 79
Vegard’s law 223
Volterra equation 246, 262