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Nonlinear Dispersive Waves

The field of nonlinear dispersive waves has developed enormously since the work of
Stokes, Boussinesq, and Korteweg and de Vries (KdV) in the nineteenth century. In the
1960s researchers developed effective asymptotic methods for deriving nonlinear wave
equations, such as the KdV equation, governing a broad class of physical phenomena.
These equations admit special solutions including those commonly known as solitons.

This book describes the underlying approximation techniques and methods for
finding solutions to these and other equations, such as the nonlinear Schrödinger,
sine–Gordon, Kadomtsev–Petviashvili and Burgers equations. The concepts and
methods covered include wave dispersion, asymptotic analysis, perturbation theory,
the method of multiple scales, deep and shallow water waves, nonlinear optics
including fiber optic communications, mode-locked lasers and dispersion-managed
wave phenomena. Most chapters feature exercise sets, making the book suitable for
advanced courses or for self-directed learning. Graduate students and researchers will
find this an excellent entry to a thriving area at the intersection of applied
mathematics, engineering and physical science.

mark j . ablowitz is Professor of Applied Mathematics at the University of
Colorado at Boulder.
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Preface

The field of nonlinear dispersive waves has developed rapidly over the past
50 years. Its roots go back to the work of Stokes in 1847, Boussinesq in
the 1870s and Korteweg and de Vries (KdV) in 1895, all of whom stud-
ied water wave problems. In the early 1960s researchers developed effective
asymptotic methods, such as the method of multiple scales, that allow one to
obtain nonlinear wave equations such as the KdV equation and the nonlinear
Schrödinger (NLS) equation, as leading-order asymptotic equations governing
a broad class of physical phenomena. Indeed, we now know that both the KdV
and NLS equations are “universal” models. It can be shown that KdV-type
equations arise whenever we have weakly dispersive and weakly nonlinear
systems as the governing system. On the other hand, NLS equations arise from
quasi-monochromatic and weakly nonlinear systems.

The discovery of solitons associated with the KdV equation in 1965 by
Zabusky and Kruskal was a major development. They employed a synergis-
tic approach: computational methods and analytical insight. This was soon
followed by a remarkable publication in 1967 by Gardner, Greene, Kruskal
and Miura that described the analytical method of solution to the KdV equa-
tion, with rapidly decaying initial data. They employed concepts of direct and
inverse scattering in the solution of the KdV equation that was perceived by
researchers then as nothing short of astonishing. It was the first time such a
higher-order nonlinear dispersive wave equation (the KdV equation is third
order in space and first order in time) was “solved” or linearized; moreover
it was shown how solitons were related to discrete eigenvalues of the time-
independent Schrödinger scattering problem. The question of whether this was
a single event, i.e., special only to the KdV equation, was answered just a
few years later. In 1971 Zakharov and Shabat, using ideas developed by Lax
in 1968, obtained the method of solution to the NLS equation with rapidly
decaying data. Their solution method also used direct and inverse scattering.
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x Preface

In 1973–1974 Ablowitz, Kaup, Newell and Segur showed that the methods
used to solve the KdV and NLS equations applied to a class of nonlinear wave
equations including physically important equations such as the modified KdV
and sine–Gordon equations. They also showed that the technique was a natural
generalization of the linear method of Fourier transforms. They termed the pro-
cedure the inverse scattering transform or IST. Subsequently researchers have
found wide classes of equations, including numerous physically interesting
nonlinear wave equations, solvable by IST, including higher-order PDEs in one
space and one time dimension, multidimensional systems, discrete systems –
i.e., differential–difference and partial difference equations and even singu-
lar integral equations. Solutions to the periodic initial value problem, direct
methods to obtain soliton solutions, conservation laws, Hamiltonian struc-
tures associated with these equations, and much more, have been obtained.
The development of IST has also motivated researchers to study many of these
and related equations by functional analytic methods in order to establish local,
and whenever feasible, global existence of solutions to the relevant initial value
problems.

On the other hand, whenever physicists and engineers need to study a spe-
cific class of nonlinear wave equations, they invariably consider and frequently
employ direct numerical simulation. This has the advantage of being applica-
ble to a wide class of systems and is often readily carried out. But for complex
multidimensional physical problems it can be extremely difficult or essentially
impossible to carry out direct simulations. For example, researchers in optical
communication rely on asymptotic reductions of Maxwell’s equations (with
nonlinear polarization terms) to fundamental NLS models because the scales of
the dynamics differ enormously: indeed by many orders of magnitude (1015).
Once an asymptotic model is developed, direct numerical methods are usually
feasible. However, to obtain general information related to specific classes of
solutions, such as solitons or solitary waves, one often finds that an analytically
based approach is highly desirable. Otherwise covering a range of interesting
parameter values becomes a long and arduous chore.

This book aims to put into perspective concepts and asymptotic methods
that researchers have found useful both for deriving important reduced asymp-
totic equations from physically significant models as well as for analyzing the
asymptotic equations and solutions under perturbations.

Part I contains Chapters 1–7; here the fundamental aspects and basic
applications of nonlinear waves and asymptotic analysis are discussed. Also
included is some discussion of linear waves in order to help set ideas and con-
cepts regarding nonlinear waves. Part II consists of Chapters 8 and 9. Here,
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Preface xi

the notion of exact solvability or integrability via associated linear compatible
systems and the method of the inverse scattering transform (IST) is described.
Each of the Chapters 1–9 has exercises that can be used for homework prob-
lems or may be considered by the reader as encouraging additional practice
and thought. Part III contains applications of nonlinear waves. The material is
by and large more recent in nature than Parts I and II. However, the mathemat-
ical methods and asymptotic analysis are similar to what has been developed
earlier. In most respects the reader will not find the work technically difficult.
Indeed the concepts often follow naturally and expand the scope and breadth
of our understanding of nonlinear wave phenomena.

A more detailed outline of this book is as follows.
Chapter 1 introduces the Korteweg–de Vries equation and the soliton con-

cept from a historical perspective via the system of anharmonic oscillators
originally studied by Fermi, Pasta and Ulam (FPU) in 1955. Kruskal and
Zabusky (1965) showed how the KdV equation resulted from the FPU problem
and they discussed why the soliton concept of “elastic interaction” explains the
recurrence of initial states observed by FPU. In recent years many researchers
have adopted the term soliton when they refer to a localized wave, and not
necessarily one that maintains its speed/amplitude upon interaction. We will
often use the more general notion when discussing physical problems. This
chapter also gives additional historical background and examples.

Chapter 2 briefly discusses linear waves, the notion of dispersive and non-
dispersive wave systems, the technique of Fourier transforms, the method of
characteristics and well-posedness.

Chapter 3 employs asymptotic methods of integrals to analyze the long-
time asymptotic solution of linear dispersive wave systems. For the linear KdV
equation it is shown that the long-time solution has three regions: exponential
decay that matches to an Airy function connection region that in turn matches
to a region with decaying oscillations. It is also shown how to extend Fourier
analysis to linear differential–difference evolution systems.

Chapter 4 introduces perturbation methods, in particular the method of mul-
tiple scales and variants such as the Stokes–Poincaré frequency shift, in the
context of ordinary differential equations. Linear and nonlinear equations are
investigated including the nonlinear pendulum with slowly varying driving
frequency.

In Chapter 5 the equations of water waves are introduced. In the limit of
weak nonlinearity and long waves, i.e., shallow water, the KdV equation is
derived. The extension to multidimensions of KdV, called the Kadomtsev–
Petviashvili (KP) equation, is also discussed.
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xii Preface

Nonlinear Schrödinger models are described in Chapter 6. The NLS equa-
tion is first derived from a model nonlinear Klein equation. Derivations of NLS
equations from water waves in deep water with weak nonlinearity are outlined
and some of the properties of NLS equations are described.

Chapter 7 introduces Maxwell’s equations with nonlinear polarization terms
such as those that arise in the context of nonlinear optics. The derivation of the
NLS equation in bulk media is outlined. A brief discussion of how the NLS
equation arises in the context of ferromagnetics is also included.

Although the primary focus of this book is directed towards physical prob-
lems and methods, the notion of integrable equations and solitons is still
extremely useful, especially as a guide. In Chapters 8 and 9 some background
information is given about these interesting systems. Chapter 8 shows how the
Korteweg–de Vries (KdV), nonlinear Schrödinger (NLS), mKdV, sine–Gordon
and other equations can be viewed as a compatibility condition of two lin-
ear equations: a linear scattering problem and associated linear time evolution
equation under “isospectrality” (constancy of eigenvalues). In Chapter 9 the
description of how one can obtain a linearization of these equations is given.
It is shown how the solitons are related to eigenvalues of the linear scattering
problem. The method is referred to as the inverse scattering transform (IST).

In Chapters 10 and 11 two applications of nonlinear optics are discussed:
optical communications and mode-locked lasers. These areas are closely
related and NLS equations play a central role.

In communications, NLS equations supplemented with rapidly varying coef-
ficients that take into account damping, gain and dispersion variation is the
relevant physically interesting asymptotic system. The latter is associated with
the technology of dispersion-management (DM), i.e., the fusing together of
optical fibers of substantially different, opposite in sign, dispersion coeffi-
cients. Dispersion-management, which is now used in commercial systems,
significantly reduces penalties due to noise and multi-pulse interactions in
wavelength division multiplexed (WDM) systems. WDM is the technology
of the simultaneous transmission of pulses centered in widely separated fre-
quency “windows”. The analysis of these NLS systems centrally involves
asymptotic analysis, in particular the technique of multiple scales. A key equa-
tion associated with DM systems is derived by the multiple-scales method. It
is a non-local NLS-type equation that is referred to as the DMNLS equation.
For these DM systems special solutions such as dispersion-managed solitons
can be obtained and interaction phenomena are discussed.

The study of mode-locked lasers involves the study of NLS equations with
saturable gain, filtering and loss terms. In many cases use of dispersion-
management is useful. A well-known model, called the master equation,
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Taylor-expands the saturable power terms in the loss. It is found that keep-
ing the full saturable loss model leads to mode-locking over wide parameter
regimes for constant as well as dispersion-managed models. This equation pro-
vides insight to the phenomena that can occur. Localized modes and strings of
solitons are found in the anomalous and normal dispersive regimes.
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