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1
Introduction

In 1955 Fermi, Pasta and Ulam (FPU) (Fermi et al., 1955) and Tsingou (see
Douxois, 2008) undertook a numerical study of a one-dimensional anharmonic
(nonlinear) lattice. They thought that due to the nonlinear coupling, any smooth
initial state would eventually lead to an equipartition of energy, i.e., a smooth
state would eventually lead to a state whose harmonics would have equal ener-
gies. In fact, they did not see this in their calculations. What they found is that
the solution nearly recurred and the energy remained in the lower modes.

To quote them (Fermi et al., 1955):

The results of our computations show features which were, from beginning to end,
surprising to us. Instead of a gradual, continuous flow of energy from the first mode to
the higher modes, . . . the energy is exchanged, essentially, among only a few. . . . There
seems to be little if any tendency toward equipartition of energy among all the degrees
of freedom at a given time. In other words, the systems certainly do not show mixing.

Their model consisted of a nonlinear spring–mass system (see Figure 1.1)
with the force law: F(Δ) = −k(Δ+α Δ2), where Δ is the displacement between
the masses, k > 0 is constant, and α is the nonlinear coefficient. Using New-
ton’s second law and the above nonlinear force law, one obtains the following
equation governing the longitudinal displacements:

mÿi = k
[
(yi+1 − yi) + α(yi+1 − yi)

2
]
− k
[
(yi − yi−1) + α(yi − yi−1)2

]
,

where i = 1, . . . ,N − 1, yi are the longitudinal displacements of the ith mass,
and (˙) = d/dt. Rewriting the right-hand side leads to

mÿi = k(yi+1 − 2yi + yi−1) + kα
[
(yi+1 − yi)

2 − (yi − yi−1)2
]
,

which can be further rewritten as

m
k

ÿi = δ̂
2yi + α

[
(yi+1 − yi)

2 − (yi − yi−1)2
]
, (1.1)
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Figure 1.1 Fermi–Pasta–Ulam mass–spring system.

where the operator δ̂2yi is defined as

δ̂2yi ≡ (yi+1 − 2yi + yi−1).

Equation (1.1) is referred to as the FPU equation. Note that if α = 0, then (1.1)
reduces to the discrete wave equation

m
k

ÿi = δ̂
2yi.

The boundary conditions are usually chosen to be either fixed displacements,
i.e., y0(t) = yN(t) = 0; or as periodic ones, y0(t) = yN(t) and ẏ0(t) = ẏN(t); the
initial conditions are given for yi(t = 0) and ẏi(t = 0). Fermi, Pasta and Ulam
chose N = 65 and the sinusoidal initial condition

yi(t = 0) = sin
( iπ

N

)
, ẏi(t = 0) = 0, i = 1, 2, . . . ,N − 1,

with periodic boundary conditions.
The numerical calculations of Fermi, Pasta and Ulam were also pioneering

in the sense that they carried out one of the first computer studies of nonlinear
wave phenomena. Given the primitive state of computing in the 1950s it was a
truly remarkable achievement!

In 1965 Kruskal and Zabusky studied the continuum limit corresponding to
the FPU model. To do that, they considered y as approximated by a continuous
function of the position and time and expanded y in a Taylor series,

yi±1 = y((i ± 1)l) = y ± lyz +
l2

2
yzz ± l3

3!
yzzz +

l4

4!
yzzzz + · · · ,

where z = il. Setting h = l/L, x = z/L, L = Nl, t = τ/(hω), where τ is
non-dimensional time with ω =

√
k/m, it follows that

∂

∂t
= hω

∂

∂τ
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and using the Taylor series on (1.1) leads to the continuous equation

h2yττ = h2yxx +
h4

12
yxxxx+α

⎡⎢⎢⎢⎢⎢⎣(hyx +
h2

2
yxx + . . .

)2
−
(
hyx − h2

2
yxx + . . .

)2⎤⎥⎥⎥⎥⎥⎦ .
Hence, to leading order, the continuous limit is given by

yττ = yxx +
h2

12
yxxxx + εyxyxx + · · · , (1.2)

where ε = 2αh and the higher-order terms are neglected. This equation was
derived by Boussinesq in the context of shallow-water waves in 1871 and 1872
(Boussinesq, 1871, 1872)!

There are four cases to consider:
(a) When h2 � 1 and |ε| � 1 (read as h2 and |ε| are both much less than 1),

both the nonlinear term and higher-order derivative term (referred to as the
dispersive term) are negligible. Then equation (1.2) reduces to the linear
wave equation

yττ = yxx.

(b) In the small-amplitude limit where h2/12 � |ε| (or where α → 0 in the
FPU model), the nonlinear term is negligible and the correction to (1.2) is
governed by the higher-order linear dispersive wave equation

yττ = yxx +
h2

12
yxxxx.

(c) If h2/12 � |ε|, then the yxxxx term is negligible and (1.2) yields

yττ = yxx + εyxyxx,

which has, as can be shown from further analysis or indicated by numer-
ical simulation, breaking or multi-valued solutions in finite time. When
breaking occurs one must use (1.2) as a more physical model.

(d) In the case of “maximal balance” where h2/12 ≈ |ε| � 1, the wave
equation is governed by a different equation.

This case of maximal balance is the most interesting case and we will now
analyze it in detail.

Let us look for a solution y of the form1

y ∼ Φ(X, T ; ε), X = x − τ, T =
ετ

2
.

1 Later in the book we will see “why”.
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6 Introduction

It follows that

∂

∂τ
= − ∂

∂X
+
ε

2
∂

∂T
,

∂2

∂τ2
=

(
∂

∂τ

)2
=

∂2

∂X2
− ε ∂

∂X∂T
+
ε2

4
∂2

∂T 2
,

∂

∂x
=

∂

∂X
.

Substituting these relations into the continuum limit, (1.2) yields[
∂2Φ

∂X2
− ε ∂Φ

∂X∂T
+
ε2

4
∂2Φ

∂T 2

]
=
∂2Φ

∂X2
+

h2

12
∂4Φ

∂X4
+ ε

∂Φ

∂X
∂2Φ

∂X2
.

Calling u = ∂Φ/∂X and dropping the O(ε2) terms, leads to the equation studied
by Zabusky and Kruskal (1965) and Kruskal (1965)

uT + uuX + δ
2uXXX = 0, (1.3)

where δ2 = h2/12ε and u(X, 0) is the given initial condition. It is important
to note that (1.3) is the well-known (nonlinear) Korteweg–de Vries (KdV)
equation. It should be remarked that Boussinesq derived (1.3) and other
approximate long-wave equations for water waves [e.g., (1.2)] (Boussinesq,
1871, 1872, 1877). Korteweg and de Vries investigated (1.3) in consider-
able detail and found periodic “cnoidal” wave solutions in the context of
long (or shallow) water waves (Korteweg and de Vries, 1895). Before the
early 1960s, the KdV equation was primarily of interest only to researchers
studying water waves. The KdV equation was not of wide interest to mathe-
maticians during the first half of the twentieth century, since most studies at
the time tended to concentrate on linear second-order equations, whereas (1.3)
is nonlinear and third order.

Kruskal and Zabusky considered the KdV equation (1.3) with periodic initial
values. They initially took δ2 small with u(X, 0) = cos(πX). When δ = 0 one
gets the so-called inviscid Burgers equation,

uT + uuX = 0,

which leads to breaking or a multi-valued solution or shock formation in finite
time. The inviscid Burgers equation is discussed further in Chapter 2.

When δ2 � 1, a sharp gradient appears at a finite time, which we denote
by t = tB, together with “wiggles” (see the dashed line in Figure 1.2). When
t � tB, the solution develops many oscillations that eventually separate into a
train of solitary-type waves. Each solitary wave is localized in space (see the
solid line in Figure 1.2). Subsequently, under further propagation, the solitary
waves interact and the solution eventually returns to a state that is similar to
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Figure 1.2 Calculations of the KdV equation (1.3), δ ≈ 0.022 [from
numerical calculations of Zabusky and Kruskal (1965)].

the initial conditions, one which resembles the recurrence phenomenon first
observed by FPU in their computations.

An important aspect raised by Kruskal and Zabusky in 1965 was the appear-
ance of the train of solitary waves. To study an individual solitary wave one
can look for traveling wave solutions of (1.3); that is, u = U(ζ), where
ζ = (X − CT − X0), C is the speed of the traveling wave, and X0 is the phase.
Doing so reduces (1.3) to

−CUζ + UUζ + δ
2Uζζζ = 0.

To look for a solitary wave we take U → U∞ as |ζ | → ∞. First integrate this
equation once to find

δ2Uζζ +
U2

2
−CU =

E1

6
,

where E1 is a constant of integration. Multiplying by Uζ and integrating again
leads to

δ2

2
U2
ζ +

U3

6
−C

U2

2
=

E1

6
U +

E2

6
,

where E2 is another constant of integration. Thus, one obtains the equation

δ2

2
U2
ζ =

1
6

P3(U)
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8 Introduction

u
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bounded
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α β γ

Figure 1.3 Solitons can exist when β < U < γ.

where

P3(U) = −U3 + 3CU2 + E1U + E2.

We will study the case when the third-order polynomial P3(U) can be fac-
torized as P(U) = −(U − α)(U − β)(U − γ), with α ≤ β ≤ γ; i.e., three real
roots; when there is only one real root, it can be shown that the solution is
unbounded. Since U2

ζ cannot be negative, one can conclude from the
(
U2
ζ ,U
)

phase plane diagram (see Figure 1.3) that a real periodic wave can exist only
when U is between the roots β and γ, since only in this zone can the solution
oscillate. In addition, it is straightforward to derive

3C = α + β + γ, E1 = −(βγ + αβ + βγ), E2 = αβγ.

Furthermore, the periodic wave solution takes the form

U(ζ) = β + (γ − β)cn2

[(
γ − α
12δ2

)1/2
ζ; m

]
,

where cn(x; m) is the cosine elliptic function with modulus m [see Abramowitz
and Stegun (1972) or Byrd and Friedman (1971) for more details about elliptic
functions] and

m =
γ − β
γ − α.

The above solution is often called a “cnoidal” wave following the terminology
of Korteweg and de Vries (1895).

In the special limit β→ α, i.e., when the factorization has a double root (see
Figure 1.4), we can integrate directly; it follows that m = 1, C = (2α + γ)/3,
and the solution can be put in the elementary form
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Figure 1.4 The limiting case of a double root (α = β).

u

u→α

ζ

Figure 1.5 Hyperbolic secant solution approaches α as |ζ | → ∞.

U(ζ) = α + (γ − α) sech2

[(
γ − α
12δ2

)1/2
ζ

]
.

In this case U → α as |ζ | → ∞ (see Figure 1.5).
If α = 0 then the solution reduces to

U(ζ) = γ sech2

[(
γ

12δ2

)1/2
ζ

]
= 3C sech2

⎛⎜⎜⎜⎜⎝ √C
2δ

ζ

⎞⎟⎟⎟⎟⎠ = 12δ2κ2 sech2 κζ,

where κ =
√

C/2δ.
We see that such traveling solitary waves propagate with a speed that

increases with the amplitude of the waves. In other words, larger-amplitude
waves propagate faster than smaller ones. In a truly important discovery, by
studying the numerical simulations of the FPU problem, Zabusky and Kruskal
(1965) found that these solitary waves had a special property. Namely the soli-
tary waves of the KdV equation collide “elastically”; i.e., they found that after a
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Figure 1.6 “Elastic” collision of two solitons.

large solitary wave overtakes a small solitary wave their respective amplitudes
and velocities tend to the amplitude and speed they had before the collision.
This suggests that the speeds and amplitudes are invariants of the motion. In
fact, the only noticeable change due to the interaction is a phase shift from
where the wave would have been if there were no interaction. For example, in
Figures 1.6 and 1.7 we see that the smaller soliton is retarded in time whereas
the larger one is pushed forward. Zabusky and Kruskal called these elastically
interacting waves “solitons”. Further, they conjectured that this property of the
collisions was the reason for the recurrence phenomenon observed by FPU.2

Subsequent research has shown that solitary waves with this elastic interac-
tion property, i.e., solitons, are associated with a much larger class of equations
than just the KdV equation. This has to do with the connection of solitons
with nonlinear wave equations that are exactly solvable by the technique of the
inverse scattering transform (IST). Integrable systems and IST are briefly cov-
ered in Chapters 8 and 9. It should also be mentioned that the term soliton has
taken on a much wider scope than the original notion of Zabusky and Kruskal:
in many branches of physics a soliton represents a solitary or localized type of
wave. When we discuss a soliton in the original sense of Zabusky and Kruskal
we will relate solitons to the special aspects of the underlying equation and its
solutions.

2 The detailed analysis of the recurrence phenomenon is quite intricate and will not be studied
here.
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