Index

Figures and tables are referenced with bold numbers.

active matrix liquid crystal display (AMLCD), 1, 8
active matrix OLED (AMOLED)
current driving scheme in, 17, 17–25, 18, 19, 21, 22, 23, 138–139
design, 35–39
performance, 140
structure, 4, 4–5, 5
voltage driving scheme in, 25–35, 26, 27, 28, 29, 30, 31, 32, 33, 34
active matrix OLED (AMOLED)
compensation techniques
array structure and timing, 126–129, 127
charge injection and clock feed-through, 114–120, 115, 117, 118, 119, 120
current comparator, 129–131, 130
performance, 131–134, 132, 133, 135, 136
successive calibration, 120–126, 121, 122, 124, 125, 126
active pixel sensor (APS)
circuit architecture, 7, 7
noise model, 42, 42–43
aging
AMOLED design, 37–38
hybrid pixel circuit, 49
pixel, 14
real-time imaging pixel circuit, 103–106
relaxation cycle, 99
successive calibration, 121–123
architecture
hybrid micro-array biosensor, 53
large-area digital imaging, 6, 7, 8
PMOLED, 3, 3
bias stress
in acceleration, 25
CBVP AMOLED pixel circuit, 68
hydrogenated amorphous silicon technology (a-Si:H), 13–15, 15, 25
organic circuit fabrication technology, 10 in TFT, 15
TFT stability in, 74–75, 75
calibration
AMOLED, 120–126, 121, 122, 124, 125, 126
current driving scheme, 87–91, 90, 91
OLED, 151–155, 152, 153, 156
challenges (in TFT circuit), 13–15, 15
charge-based driving scheme
charge-based pixel circuit, 93–103, 94, 95, 96, 97, 98, 99, 102
charge-based pixel circuit
AMOLED display, 100–103, 102
architecture, 93–94, 94, 95
performance, 95–98, 96, 97, 98
relaxation cycle, 98–100, 99
compensation techniques
array structure and timing, 126–129
charge injection and clock feed-through, 114–120
current comparator, 129–131
mirror, 30–32
parallel, 28
performance, 131–134
successive calibration, 120–126
cost
AMOLED implementation, 39
flat panel imager, 44
current driving scheme
acceleration in, 24, 24–25
calibration, 87–91, 90, 91
pixel circuits, 17, 17–23, 18, 19, 21, 22, 23
Index

current programming
hybrid biomedical sensor array, 52–66, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
hybrid voltage biomedical imaging, 46–52, 47, 48, 49, 50, 51

current-biased voltage-programmed driving scheme (CBVP)
AMOLED pixel circuit, 66–71, 67, 68, 69, 71, 72, 138
pixel circuit, 46–52, 47, 48, 49, 50, 51
sensor array, 52–66, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66

design
AMOLED, 35–39
flat panel, 39–44
flat panel imager, 40, 42

enhanced voltage driving scheme, 142–149, 143, 144, 145, 146, 147, 148, 149

fabrication (pixel circuit), 1–11, 9
flat panel imager design, 39–44, 40, 42
large-area digital imaging, 6, 6–8, 7, 8
OLED displays, 1–5, 2, 3, 4, 5
performance, 141

hybrid biomedical sensor architecture, 53
circuit architecture, 7–8, 8
compensation techniques, 136
current programming, 46–66, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
performance, 141

hydrogenated amorphous silicon technology (a-Si:H)
aging in, 137
bias stress in, 13, 15
CBVP AMOLED pixel circuit, 72
comparison, 9, 10
current comparator, 132
settling behavior in, 17, 20–23, 21, 22, 23
successive calibration in, 120–126
hydrogenated nano/micro crystalline silicon technology (nc/mc-Si:H), 9, 10

luminance
OLED, 2
real-time imaging pixel circuit, 104, 105

mismatch in AMOLED displays
array structure and timing, 126–129
CBVP pixel circuit, 67
charge injection and clock feed-through, 114–120
performance, 134
successive calibration, 120–126
mismatch parameters
compensation techniques for, 15–35
enhanced voltage driving scheme, 142–149, 143, 144, 145, 147, 148, 149
poly-Si, 10, 15, 16, 25
in voltage driving scheme, 32–35, 33, 34
noise
charge-based driving scheme, 109–111, 110, 111, 112
current driving scheme, 81–83, 82, 83, 84
current-biased voltage-programmed driving scheme (CBVP), 50–52, 51, 59, 61, 62, 63–66, 65, 66
operational trans-resistance amplifier (OTRA), 52–56, 57, 63
organic circuit fabrication technology, 9, 10
organic light emitting diode (OLED) calibration, 151–155, 152, 153, 156
flat panel display, 1–5, 2, 3, 4, 5
parasitic capacitance
as issue in current programming, 74, 78–80, 80
and localized current source, 74–75
passive matrix OLED (PMOLED), 3, 3
passive pixel sensor (PPS), 6, 6–7
performance
AMOLED compensation techniques, 131–134, 132, 133, 135, 136
CBVP AMOLED pixel circuit, 68–71, 71, 72
charge-based driving scheme, 95–98, 96, 97, 98, 108, 109, 109
current driving scheme, 84–86, 85, 86, 87, 88, 89

current-biased voltage-programmed driving scheme (CBVP), 57–61
pixel circuit
AMOLED, 66–71
charge-based, 93–103
current driving scheme, 17–23
current-biased voltage-programmed driving scheme (CBVP), 46–52
fabrication, 1–11
real-time imaging pixel circuit, 103–112
TFT challenges with, 13–15
voltage driving scheme, 25–35
poly silicon technology (poly-Si) comparison, 9, 9–11
current programming need in, 66
mismatch in, 10, 15, 16
real-time imaging pixel circuit architecture, 103–108, 104, 107, 108
noise, 109–111, 110, 111, 112
performance, 108, 109, 109
settling behavior
current driving scheme, 75, 76, 77–78, 77, 78, 80, 89
current-biased voltage-programmed driving scheme (CBVP), 46–49, 47
and localized current source, 74–75
stack structure
emission (EML), 2
hole-transport (HTL), 2
indium tin oxide (ITO), 2
OLED, 2
voltage programming, 26, 26–27, 27
thin film transistors (TFT)
in AMLCD, 1, 8
for flat panel display, 2, 3, 4, 5, 6, 7, 8
for flat-panel, 5
managing material disorder, 1
structures for pixel circuits, 13–15, 14
voltage driving scheme
in AMOLED pixel circuits, 25–35, 26, 27, 28, 29, 30, 31, 32, 33, 34
enhanced, 142–149, 143, 144, 145, 146, 147, 148, 149
voltage programming
bootstrapping, 29–30, 30, 31
mirror compensation, 30–32, 32
parallel-compensation, 28, 28, 29
stacked, 26, 26–27, 27
Vt-shift
compensation techniques for, 15–35
enhanced voltage driving scheme, 142–149, 143, 144, 145, 146, 147, 148, 149
poly-Si, 10, 15, 16, 25
in voltage driving scheme, 32–35, 33, 34
Vt-shift in AMOLED displays
array structure and timing, 126–129
CBVP pixel circuit, 67
charge injection and clock feed-through, 114–120
performance, 134
successive calibration, 120–126