The History of Mathematical Proof in Ancient Traditions

This radical, profoundly scholarly book explores the purposes and nature of proof in a range of historical settings. It overturns the view that the first mathematical proofs were in Greek geometry and rested on the logical insights of Aristotle by showing how much of that view is an artefact of nineteenth-century historical scholarship. It documents the existence of proofs in ancient mathematical writings about numbers, and shows that practitioners of mathematics in Mesopotamian, Chinese and Indian cultures knew how to prove the correctness of algorithms, which are much more prominent outside the limited range of surviving classical Greek texts that historians have taken as the paradigm of ancient mathematics. It opens the way to providing the first comprehensive, textually based history of proof.

Jeremy Gray, Professor of the History of Mathematics, Open University

‘Each of the papers in this volume, starting with the amazing “Prologue” by the editor, Karine Chemla, contributes to nothing less than a revolution in the way we need to think about both the substance and the historiography of ancient non-Western mathematics, as well as a reconception of the problems that need to be addressed if we are to get beyond myth-eaten ideas of “unique Western rationality” and “the Greek miracle”. I found reading this volume a thrilling intellectual adventure. It deserves a very wide audience.’

Hilary Putnam, Cogan University Professor Emeritus, Harvard University

Karine Chemla is Senior Researcher at the CNRS (Research Unit SPHERE, University Paris Diderot, France), and a Senior Fellow at the Institute for the Study of the Ancient World at New York University. She is also Professor on a Guest Chair at Northwestern University, Xi’an, as well as at Shanghai Jiaotong University and Hebei Normal University, China. She was awarded a Chinese Academy of Sciences Visiting Professorship for Senior Foreign Scientists in 2009.
The History of Mathematical Proof In Ancient Traditions

Edited by Karine Chemla 林力娜
Contents

List of figures [ix]
List of contributors [xii]
Note on references [xiv]
Acknowledgements [xv]

Prologue Historiography and history of mathematical proof: a research programme [1]
KARINE CHEMLA

PART I VIEWS ON THE HISTORIOGRAPHY OF MATHEMATICAL PROOF

Shaping ancient Greek mathematics: the critical editions of Greek texts in the nineteenth century

1 The Euclidean ideal of proof in The Elements and philological uncertainties of Heiberg’s edition of the text [69]
BERNARD VITRAC

2 Diagrams and arguments in ancient Greek mathematics: lessons drawn from comparisons of the manuscript diagrams with those in modern critical editions [135]
KEN SAITO AND NATHAN SIDOLI

3 The texture of Archimedes’ writings: through Heiberg’s veil [163]
REVIEL NETZ

Shaping ancient Greek mathematics: the philosophers’ contribution

4 John Philoponus and the conformity of mathematical proofs to Aristotelian demonstrations [206]
ORNAR HARARI

Forming views on the ‘Others’ on the basis of mathematical proof

5 Contextualizing Playfair and Colebrooke on proof and demonstration in the Indian mathematical tradition (1780–1820) [228]
DHARUV RAINA
vi Contents

6 Overlooking mathematical justifications in the Sanskrit tradition: the nuanced case of G. F. W. Thibaut [260]
AGATHE KELLER

7 The logical Greek versus the imaginative Oriental: on the historiography of ‘non-Western’ mathematics during the period 1820–1920 [274]
FRANÇOIS CHARETTE

PART II HISTORY OF MATHEMATICAL PROOF IN ANCIENT TRADITIONS: THE OTHER EVIDENCE

Critical approaches to Greek practices of proof

8 The pluralism of Greek ‘mathematics’ [294]
G. E. R. LLOYD

Proving with numbers: in Greece

9 Generalizing about polygonal numbers in ancient Greek mathematics [311]
IAN MUELLER

10 Reasoning and symbolism in Diophantus: preliminary observations [327]
REVIEL NETZ

Proving with numbers: establishing the correctness of algorithms

11 Mathematical justification as non-conceptualized practice: the Babylonian example [362]
JENS HOYRUP

12 Interpretation of reverse algorithms in several Mesopotamian texts [384]
CHRISTINE PROUST

13 Reading proofs in Chinese commentaries: algebraic proofs in an algorithmic context [423]
KARINE CHEMLA

14 Dispelling mathematical doubts: assessing mathematical correctness of algorithms in Bhāskara’s commentary on the mathematical chapter of the Āryabhaṭīya [487]
AGATHE KELLER
The later persistence of traditions of proving in Asia: late evidence of traditions of proof

15 Argumentation for state examinations: demonstration in traditional Chinese and Vietnamese mathematics [509]
ALEXEI VOLKOV

The later persistence of traditions of proving in Asia: interactions of various traditions

16 A formal system of the Gougu method: a study on Li Rui’s Detailed Outline of Mathematical Procedures for the Right-Angled Triangle [552]
TIAN MIAO

Index [574]
Figures

1.1 Textual history: the philological approach.
1.2 Euclid's *Elements*. Typology of deliberate structural alterations.
1.3 Euclid's *Elements*. Proposition XII.15.
2.1 Diagrams for Euclid's *Elements*, Book XI, Proposition 12.
2.2 Diagrams for Euclid's *Elements*, Book I, Proposition 13.
2.3 Diagrams for Euclid's *Elements*, Book I, Proposition 7.
2.4 Diagrams for Euclid's *Elements*, Book I, Proposition 35.
2.5 Diagrams for Euclid's *Elements*, Book VI, Proposition 20.
2.6 Diagrams for Euclid's *Elements*, Book I, Proposition 44.
2.7 Diagrams for Euclid's *Elements*, Book II, Proposition 7.
2.8 Diagrams for Apollonius' *Conica*, Book I, Proposition 16.
2.9 Diagrams for Euclid's *Elements*, Book IV, Proposition 16. Dashed lines were drawn in and later erased. Grey lines were drawn in a different ink or with a different instrument.
2.10 Diagrams for Archimedes' *Method*, Proposition 12.
2.12 Diagrams for Theodosius' *Spheres*, Book II, Proposition 6.
2.13 Diagrams for Theodosius' *Spheres*, Book II, Proposition 15.
2.16 Diagrams for Euclid's *Elements*, Book I, Proposition 44.
2.17 Diagrams for Euclid's *Elements*, Book I, Proposition 22.
3.1 Heiberg's diagrams for *Sphere and Cylinder* I.16 and the reconstruction of Archimedes' diagrams.
3.2 A reconstruction of Archimedes' diagram for *Sphere and Cylinder* I.15.
3.3 Heiberg's diagram for *Sphere and Cylinder* I.9 and the reconstruction of Archimedes' diagram.
3.4 Heiberg's diagram for *Sphere and Cylinder* I.12 and the reconstruction of Archimedes' diagram.
3.5 Heiberg's diagram for *Sphere and Cylinder* I.33 and the reconstruction of Archimedes' diagram.
List of figures

3.6 The general case of a division of the sphere.
5.1 The square a^2.
5.2 The square a^2 minus the square b^2.
5.3 The rectangle of sides $a + b$ and $b - a$.
5.4 The square a^2.
5.5 The square b^2.
5.6 The square $(a + b)^2$.
5.7 The area $(a + b)^2$ minus the squares a^2 and b^2 equals twice the product ab.
5.8 A right-angled triangle ABC and its height BD.
9.1 Geometric representation of polygonal numbers.
9.2 The generation of square numbers.
9.3 The generation of the first three pentagonal numbers.
9.4 The graphic representation of the fourth pentagonal number.
9.6 Diophantus’ diagram, *Polygonal Numbers*.
11.1 The configuration of VAT 8390 #1.
11.2 The procedure of BM 13901 #1, in slightly distorted proportions.
11.3 The configuration discussed in TMS ix #1.
11.4 The configuration of TMS ix #2.
11.5 The situation of TMS xvi #1.
11.6 The transformations of TMS xvi #1.
11.7 The procedure of YBC 6967.
13.1 The truncated pyramid with circular base.
13.2 The truncated pyramid with square base.
13.3 The layout of the algorithm up to the point of the multiplication of fractions.
13.4 The execution of the multiplication of fractions on the surface for computing.
13.5 The basic structure of algorithms 1 and 2, for the truncated pyramid with square base.
13.6 The basic structure of algorithm 2’, which begins the computation of the volume sought for.
13.7 Algorithm 5: cancelling opposed multiplication and division.
13.8 The division between quantities with fractions on the surface for computing.
13.9 The multiplication between quantities with fractions on the surface for computing.
13.10 The layout of a division or a fraction on the surface for computing.
14.1 Names of the sides of a right-angled triangle.
List of figures xi

14.2 A schematized gnomon and light.
14.3 Proportional astronomical triangles.
14.4 Altitude and zenith.
14.5 Latitude and co-latitude on an equinoctial day.
14.6 Inner segments and fields in a trapezoid.
14.7 An equilateral pyramid with a triangular base.
14.8 The proportional properties of similar triangles.
16.1 The gougu shape (right-angled triangle).
16.2 Li Rui’s diagram for his explanation for the fourth problem in
Detailed Outline of Mathematical Procedures for the Right-Angled Triangle.
16.3 Li Rui’s diagram for his explanation for the eighth problem in
Detailed Outline of Mathematical Procedures for the Right-Angled Triangle.
Contributors

FRANÇOIS CHARETTE Independent scholar (retired), Gärtringen, Germany

KARINE CHEMLA Directrice de recherche, REHSEIS, UMR SPHERE, CNRS and University Paris Diderot, PRES Sorbonne Paris Cité, France

ORNAR HARARI Department of Philosophy and Department of Classics, Tel Aviv University, Israel

JENS HØYRUP Emeritus Professor, Section for Philosophy and Science Studies, Roskilde University, Roskilde, Denmark

AGATHE KELLER Chargée de recherche, REHSEIS, UMR SPHERE, CNRS and University Paris Diderot, PRES Sorbonne Paris Cité, France

G. E. R. LLOYD Professor, Needham Research Institute, Cambridge, UK

IAN MUELLER Emeritus Professor, Philosophy and Conceptual Foundations of Science, University of Chicago, USA (deceased 2010)

REVIEL NETZ Professor, Department of Classics, Stanford University, Palo Alto, USA

CHRISTINE PROUST Directrice de recherche, REHSEIS, UMR SPHERE, CNRS and University Paris Diderot, PRES Sorbonne Paris Cité, Paris, France

DHHRUV RAINA Professor, School of Social Sciences, Jawaharlal Nehru University, New Delhi, India

KEN SAITO Professor, Department of Human Sciences, Osaka Prefecture University, Japan

NATHAN SIDOLI Assistant Professor, School of International Liberal Studies, Waseda University, Tokyo, Japan

TIAN MIAO Senior Researcher, IHNS, Chinese Academy of Science, Beijing, China
List of contributors

BERNARD VITRAC Directeur de recherche, ANHIMA, CNRS UMR 8210, Paris, France

ALEXEI VOLKOV Assistant Professor, Center for General Education and Institute of History, National Tsing-Hua University, Hsinchu, R.O.C., Taiwan
Note on references

The following books are frequently referred to in the notes. We use the following abbreviations to refer to them.

Acknowledgements

The book that the reader has in his or her hands is based on the research carried out within the context of a working group that convened in Paris for three months during the spring of 2002. The core members of the group were: Geoffrey Lloyd, Ian Mueller, Dhruv Raina, Reviel Netz and myself. Other colleagues took part in some or all of the weekly discussions: Alain Bernard, Armelle Debru, Marie-José Durand-Richard, Pierre-Sylvain Filliozat, Catherine Jami, Agathe Keller, François Patte, Christine Proust, Tian Miao, Bernard Vitrac and Alexei Volkov. As a complement to its work, this group organized a workshop to tackle questions for which no specialist could be found within the original set of participants (www.piea-ipas.msh-paris.fr/IMG/pdf/RAPPORT_groupe_Chemla.pdf). The whole endeavour has been made possible thanks to the International Advanced Study Program set up by the Maison des sciences de l’homme, Paris, in collaboration with Reid Hall, Columbia University at Paris. It is my pleasure to express to these institutions my deepest gratitude. I completed the writing of the introduction at the Dibner Institute, MIT, to which I am pleased to address my heartfelt thanks. Stays at the Max Planck Institute, Berlin, in 2007, and at Le Mas Pascal, Cavillargues, in 2008 and 2009, have provided the quietness needed to complete the project. Thanks for that to Hans-Jörg Rheinberger, Jean-Pascal Jullien and Gilles Vandenbroeck. For the preparation of this volume, the core members of the group acted as an editorial board. I express my deepest gratitude to those who accepted the anonymous work of being referees. Micah Ross, Guo Yuanyuan, Wang Xiaofei, Leonid Zhmud and Zhu Yiwen have played a key role in the elaboration of this book. I have pleasure here in expressing my deepest thanks to them as well as to those who read versions of this introduction: Bruno Belhoste, Evelyn Fox Keller, Ramon Guardans and Jacques Virbel.