Modelling Drying Processes

This comprehensive summary of the state-of-the-art and the ideas behind the reaction engineering approach (REA) to drying processes is an ideal resource for researchers, academics and industry practitioners.

Starting with the formulation, modelling and applications of the lumped-REA, it goes on to detail the use of the REA to describe local evaporation and condensation, and its coupling with equations of conservation of heat and mass transfer, called the spatial-REA, to model non-equilibrium multiphase drying. Finally, it summarises other established drying models, discussing their features, limitations and comparisons with the REA.

Application examples featured throughout help fine-tune the models and implement them for process design, and the evaluation of existing drying processes and product quality during drying. Further uses of the principles of REA are demonstrated, including computational fluid dynamics-based modelling, and further expanded to model other simultaneous heat and mass transfer processes.

Xiao Dong Chen is currently the 1000-talent Chair Professor of Chemical Engineering at Xiamen University in China, and the Head of Department of Chemical and Biochemical Engineering. He held previously Chair Professorships of Chemical Engineering at Auckland University, New Zealand, and Monash University, Australia, respectively from 2001 to 2010. He is now a fractional Professor of Chemical Engineering and the Co-Director of the Biotechnology and Food Engineering Research Laboratory at Monash University, Australia. He is an Elected Fellow of Royal Society of NZ, Australian Academy of Technological Sciences and Engineering, and IChemE.

Aditya Putranto holds a BE of Chemical Engineering from Bandung Institute of Technology, Indonesia and a Master of Food Engineering from University of New South Wales, Australia. He has a Ph.D. in Chemical Engineering from Monash University, Australia. He has worked in Indonesia as lecturer in Parahyangan Catholic University. His research area is heat and mass transfer. He has published a dozen journal papers in peer-reviewed hard-core chemical engineering journals.
‘The Reaction Engineering Approach (REA), which captures basic drying physics, is a simple yet effective mathematical model for practical applications of diverse drying processes. The intrinsic “fingerprint” of the drying phenomena can, in principle, be obtained through just one accurate drying experiment. The REA is easy to use with the guidance of featured application examples given in this book. This book is highly recommended for both academics and industry practitioners involved in any aspect of thermal drying.’

Zhanyong Li,
Tianjin University of Science and Technology,
China

‘An interesting book on a novel approach to mathematical modelling of an important process. Modelling Drying Processes: A Reaction Engineering Approach is the first attempt to summarize the REA to modelling in a single comprehensive reference source.’

Sakamon Devahastin,
King Mongkut’s University of Technology Thonburi,
Thailand
Modelling Drying Processes

A Reaction Engineering Approach

XIAO DONG CHEN
Monash University, Australia

ADITYA PUTRANTO
Monash University, Australia
Contents

List of figures ix
List of tables xxvi
Preface xxvii
Historical background xxx

1 Introduction 1

1.1 Practical background 1
1.2 A ‘microstructural’ discussion of the phenomena of drying moist, porous materials 6
1.3 The REA to modelling drying 15
 1.3.1 The relevant classical knowledge of physical chemistry 15
 1.3.2 General modelling approaches 17
 1.3.3 Outline of the REA 18
1.4 Summary 29
References 30

2 Reaction engineering approach I: Lumped-REA (L-REA) 34

2.1 The REA formulation 34
2.2 Determination of REA model parameters 36
2.3 Coupling the momentum, heat and mass balances 40
2.4 Mass or heat transfer limiting 43
 2.4.1 Biot number analysis 43
 2.4.2 Lewis number analysis 47
 2.4.3 Combination of Biot and Lewis numbers 50
2.5 Convective drying of particulates or thin layer products modelled using the L-REA 50
 2.5.1 Mathematical modelling of convective drying of droplets of whey protein concentrate (WPC) using the L-REA 51
 2.5.2 Mathematical modelling of convective drying of a mixture of polymer solutions using the L-REA 53
 2.5.3 Results of modelling convective drying of droplets of WPC using the L-REA 55
2.5.4 Results of modelling convective drying of a thin layer of a mixture of polymer solutions using the L-REA 57
2.6 Convective drying of thick samples modelled using the L-REA 61
 2.6.1 Formulation of the L-REA for convective drying of thick samples 61
 2.6.2 Prediction of surface sample temperature 63
 2.6.3 Modelling convective drying thick samples of mango tissues using the L-REA 64
 2.6.4 Results of convective drying thick samples of mango tissues using the L-REA 66
2.7 The intermittent drying of food materials modelled using the L-REA 69
 2.7.1 Mathematical modelling of intermittent drying of food materials using the L-REA 69
 2.7.2 The results of modelling of intermittent drying of food materials using the L-REA 69
 2.7.3 Analysis of surface temperature, surface relative humidity, saturated and surface vapour concentration during intermittent drying 73
2.8 The intermittent drying of non-food materials under time-varying temperature and humidity modelled using the L-REA 80
 2.8.1 Mathematical modelling using the L-REA 81
 2.8.2 Results of intermittent drying under time-varying temperature and humidity modelled using the L-REA 82
2.9 The heating of wood under linearly increased gas temperature modelled using the L-REA 88
 2.9.1 Mathematical modelling using the L-REA 89
 2.9.2 Results of modelling wood heating under linearly increased gas temperatures using the L-REA 91
2.10 The baking of cake modelled using the L-REA 95
 2.10.1 Mathematical modelling of the baking of cake using the L-REA 96
 2.10.2 Results of modelling of the baking of cake using the L-REA 97
2.11 The infrared-heat drying of a mixture of polymer solutions modelled using the L-REA 100
 2.11.1 Mathematical modelling of the infrared-heat drying of a mixture of polymer solutions using the L-REA 101
 2.11.2 The results of mathematical modelling of infrared-heat drying of a mixture of polymer solutions using the L-REA 103
2.12 The intermittent drying of a mixture of polymer solutions under time-varying infrared-heat intensity modelled using the L-REA 104
 2.12.1 Mathematical modelling of the intermittent drying of a mixture of polymer solutions under time-varying infrared-heat intensity using the L-REA 105
2.12.2 Results of modelling the intermittent drying of a mixture of polymer solutions under time-varying infrared heat intensity using the L-REA 106
2.13 Summary 116
References 117

3 Reaction engineering approach II: Spatial-REA (S-REA) 121

3.1 The S-REA formulation 121
3.2 Determination of the S-REA parameters 125
3.3 The S-REA for convective drying 127
 3.3.1 Mathematical modelling of convective drying of mango tissues using the S-REA 128
 3.3.2 Mathematical modelling of convective drying of potato tissues using the S-REA 130
 3.3.3 Results of modelling of convective drying of mango tissues using the S-REA 133
 3.3.4 Results of modelling of convective drying of potato tissues using the S-REA 138
3.4 The S-REA for intermittent drying 141
 3.4.1 The mathematical modelling of intermittent drying using the S-REA 141
 3.4.2 Results of modelling intermittent drying using the S-REA 142
3.5 The S-REA to wood heating under a constant heating rate 148
 3.5.1 The mathematical modelling of wood heating using the S-REA 148
 3.5.2 The results of modelling wood heating using the S-REA 151
3.6 The S-REA for the baking of bread 158
 3.6.1 Mathematical modelling of the baking of bread using the S-REA 158
 3.6.2 The results of modelling of the baking of bread using the S-REA 160
3.7 Summary 164
References 165

4 Comparisons of the REA with Fickian-type drying theories, Luikov's and Whitaker's approaches 169

4.1 Model formulation 169
 4.1.1 Crank's effective diffusion 171
 4.1.2 The formulation of effective diffusivity to represent complex drying mechanisms 172
 4.1.3 Several diffusion-based models 173
4.2 Boundary conditions’ controversies 177
4.3 A diffusion-based model with local evaporation rate 179
 4.3.1 Problems in determining the local evaporation rate 180
 4.3.2 The equilibrium and non-equilibrium multiphase drying models 182
Contents

4.4 Comparison of the diffusion-based model and the L-REA on convective drying 185
4.5 Comparison of the diffusion-based model and the S-REA on convective drying 188
4.6 Model formulation of Luikov’s approach 190
4.7 Model formulation of Whitaker’s approach 195
4.8 Comparison of the L-REA, Luikov’s and Whitaker’s approaches for modelling heat treatment of wood under constant heating rates 200
4.9 Comparison of the S-REA, Luikov’s and Whitaker’s approaches for modelling heat treatment of wood under constant heating rates 203
4.10 Summary 206
References 207

Index 212
Figures

1.1 Some traditional dried products. (a) Broccoli-steam blanched and air dried (kindly provided by Ms Xin Jin, Wageningen University, The Netherlands), (b) air-dried Chinese tea leaves (taken at Xiamen University laboratory), (c) spray dried aqueous herbal extract (particle size is about 80 µm) (taken at Xiamen University laboratory), (d) timber stacked for kiln drying (kindly provided by Professor Shusheng Pang (Canterbury University, New Zealand).

1.2 Chemical structures of some chemicals: (a) 1, caffeic acid; 2, gallic acid; 3, vanillic acid; (b) 1, cellulose; 2, starch; 3, pectin; (c) human insulin.

1.3 ‘Air drying’ of a capillary assembly (a bundle) which consists of identical capillaries (diameter and wall material) – a scenario of symmetrical hot air drying of an infinitely large slab filled with the capillaries (modified from Chen, 2007); the air flows along both sides of the symmetrical material.

1.4 Schematic showing a common scenario of air drying of a moist solid.

1.5 Packed particulate material.

1.6 Cellular structures in plant material.

1.7 (a) Generation of computational domains of corn geometry for the hybrid mixture theory of corn kernels (adapted from Takhar et al. (2011)). (b) The simulated results (isosurface plots of corn moisture content) for a variety of drying conditions. [Reprinted from Journal of Food Engineering, 106, P.S. Takhar, D.E. Maier, O.H. Campanella and G. Chen, Hybrid mixture theory based moisture transport and stress development in corn kernels during drying: Validation and simulation results, 275–282, Copyright (2012), with permission from Elsevier.]

1.8 Wood cellular structures employed in pore-network modelling of drying of wood. [Reprinted from Drying Technology, 29, P. Perre, A review of modern computational and experimental tools relevant to the field of drying, 1529–1541, Copyright (2012), with permission from Taylor & Francis.]

1.9 Schematic illustration of the effect of temperature on final liquid water content (qualitatively derived from Equation 1.3.6).
List of figures

1.10 (a) Drying flux versus average water content \(\bar{X} \); (b) the CDRC (characteristic drying rate curve). [Reprinted from *Chemical Engineering Science*, 9, D.A. van Meel, Adiabatic convection batch drying with recirculation of air, 36–44, Copyright (2012), reprinted with permission from Elsevier.]

1.11 Saturated water vapour concentration in air under 1 atm (Equation 1.3.21).

1.12 Schematic diagram showing the heat of drying as a function of water content of a porous solid of concern (when the water content is beyond the point where the heat of drying becomes the latent heat of pure water evaporation, the water content may be called *free water*).

2.1 Equipment setup of convective drying of milk droplets (a) measuring droplet shrinkage; (b) measuring droplet temperature; (c) measuring mass change. [Reprinted from *Chemical Engineering Science*, 66, N. Fu, M.W. Woo, S.X.Q. Lin et al., 1738–1747, Copyright (2012), with permission from Elsevier.] (Adapted from Fu et al. (2011) *Chemical Engineering Science* 66, 1738–1747).

2.2 The deflection of glass filament and a typical standard curve (a) measuring displacement to measure weight loss; (b) correlation between the displacement and the weight. [Reprinted from *Chemical Engineering Science*, 66, N. Fu, M.W. Woo, S.X.Q. Lin et al., 1738–1747, Copyright (2012), with permission from Elsevier.]

2.3 The relative activation energy of convective drying of 20%wt. skim milk powder at a drying air temperature of 67.5 °C, velocity of 0.45 m s\(^{-1}\) and humidity of 0.0001 kg H\(_2\)O kg dry air\(^{-1}\). [Reprinted from *AIChE Journal*, 51, X.D. Chen and S.X.Q. Lin, Air drying of milk droplet under constant and time-dependent conditions, 1790–1799, Copyright (2012), with permission from John Wiley & Sons, Inc.]

2.4 Schematic diagram showing the plug-flow spray dryer.

2.5 The schematic diagram showing the parameters for the definition of the classical Biot number. [Reprinted from *Drying Technology*, 23, X.D. Chen, Air drying of food and biological materials – Modified Biot and Lewis number analysis, 2239–2248, Copyright (2012), with permission from Taylor & Francis.]

2.6 The schematic diagram showing the parameters for the definition of the modified Biot number (Chen–Biot number). [Reprinted from *Drying Technology*, 23, X.D. Chen, Air drying of food and biological materials – Modified Biot and Lewis number analysis, 2239–2248, Copyright (2012), with permission from Taylor & Francis.]

2.7 The relative activation energy of convective drying of WPC at different drying air temperatures. [Reprinted from *Chemical Engineering and Processing*, 46, S.X.Q. Lin and X.D. Chen, The reaction engineering approach to modelling the cream and whey protein concentrate droplet drying, 437–443, Copyright (2012), with permission from Elsevier.]
2.8 The droplet diameter changes during convective drying of WPC. [Reprinted from Chemical Engineering and Processing, 46, S.X.Q. Lin and X.D. Chen, The reaction engineering approach to modelling the cream and whey protein concentrate droplet drying, 437–443, Copyright (2012), with permission from Elsevier.] 53

2.9 Heat transfer mechanisms of the convective drying of a mixture of polymer solutions. [Reprinted from Chemical Engineering and Processing: Process Intensification, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2012), with permission from Elsevier.] 54

2.10 Normalised activation energy and fitted curve of polyvinyl alcohol/glycerol/water under convective drying at an air temperature of 35 °C and relative humidity of 30%. [Reprinted from Chemical Engineering and Processing: Process Intensification, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2012), with permission from Elsevier.] 55

2.11 The comparison between experimental and model prediction using the L-REA of convective drying of WPC at drying air temperatures of (a) 67.5 °C (b) 87.1 °C (c) 106.6 °C. [Reprinted from Chemical Engineering and Processing, 46, S.X.Q. Lin and X.D. Chen, The reaction engineering approach to modelling the cream and whey protein concentrate droplet drying, 437–443, Copyright (2012), with permission from Elsevier]. 56

2.12 Moisture content profile of convective drying at an air temperature of 55 °C, air velocity of 2.8 m s⁻¹ and air relative humidity of 12%. [Reprinted from Chemical Engineering and Processing: Process Intensification, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2010), with permission from Elsevier.] 57

2.13 Product temperature profile of convective drying at an air temperature of 55 °C, air velocity of 2.8 m s⁻¹ and air relative humidity of 12%. [Reprinted from Chemical Engineering and Processing: Process Intensification, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2010), with permission from Elsevier.] 58

2.14 Moisture content profile of convective drying at an air temperature of 35 °C, air velocity of 1 m s⁻¹ and air relative humidity of 30%. [Reprinted from Chemical Engineering and Processing: Process Intensification, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol
List of figures

(PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2010), with permission from Elsevier.

2.15 Product temperature profile of convective drying at an air temperature of 35°C, air velocity of 1 m s⁻¹ and air relative humidity of 30%.

[Reprinted from *Chemical Engineering and Processing: Process Intensification*, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2010), with permission from Elsevier.]

2.16 Product temperature profile of convective drying at an air temperature of 55°C, air velocity of 1 m s⁻¹ and air relative humidity of 12%.

[Reprinted from *Chemical Engineering and Processing: Process Intensification*, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2010), with permission from Elsevier.]

2.17 Product temperature profile of convective drying at an air temperature of 55°C, air velocity of 1 m s⁻¹ and air relative humidity of 12%.

[Reprinted from *Chemical Engineering and Processing: Process Intensification*, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2010), with permission from Elsevier.]

2.18 The relative activation energy (ΔE/AΔE,φ) of convective drying of mango tissues at an air velocity of 4 m s⁻¹, drying air temperature of 55°C, and air humidity of 0.0134 kg H₂O kg dry air⁻¹. [Reprinted from *Drying Technology*, 29, A. Putranto, X.D. Chen and P.A. Webley, Modelling of drying of food materials with thickness of several centimeters by the reaction engineering approach (REA), 961–973, Copyright (2012), with permission from Taylor & Francis Ltd.]

2.19 Moisture content profile of convective mango tissues at air temperatures of 45, 55, and 65°C (modelled using the L-REA which incorporates the temperature distribution inside the sample). [Reprinted from *Drying Technology*, 29, A. Putranto, X.D. Chen and P.A. Webley, Modelling of drying of food materials with thickness of several centimeters by the reaction engineering approach (REA), 961–973, Copyright (2012), with permission from Taylor & Francis Ltd.]

2.20 Temperature profile of convective mango tissues at air temperatures of 45, 55, and 65°C (modelled using the L-REA which incorporates the temperature distribution inside the sample). [Reprinted from *Drying Technology*, 29, A. Putranto, X.D. Chen and P.A. Webley, Modelling of drying of food materials with thickness of several centimeters by the reaction engineering approach (REA), 961–973, Copyright (2012), with permission from Taylor & Francis Ltd.]
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
</table>
| 2.21 | Moisture content profile of convective mango tissues at air temperatures of 45, 55, and 65 °C (modelled using the L-REA without approximation of temperature distribution inside the sample). [Reprinted from *Drying Technology*, 29, A. Putranto, X.D. Chen and P.A. Webley, Modelling of drying of food materials with thickness of several centimeters by the reaction engineering approach (REA), 961–973, Copyright (2012), with permission from Taylor & Francis Ltd.]
| | | 67 |
| 2.22 | Temperature profile of convective mango tissues at air temperatures of 45, 55, and 65 °C (modelled using the L-REA without approximation of temperature distribution inside the sample). [Reprinted from *Drying Technology*, 29, A. Putranto, X.D. Chen and P.A. Webley, Modelling of drying of food materials with thickness of several centimeters by the reaction engineering approach (REA), 961–973, Copyright (2012), with permission from Taylor & Francis Ltd.]
| | | 68 |
| | | 70 |
| | | 70 |
| | | 71 |
| | | 71 |
| 2.27 | Moisture content profile of mango tissues during intermittent drying at a drying air temperature of 65 °C and resting at 27 °C. [Reprinted from |
List of figures

2.28 Temperature profile of mango tissues during intermittent drying at a drying air temperature of 65 °C and resting at 27 °C. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley, Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society.]

2.29 Relative activation energy profile of mango tissues during intermittent drying at a drying air temperature of 65 °C and resting at 27 °C. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley, Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society.]

2.30 Surface relative humidity profile of mango tissues during intermittent drying at a drying air temperature of 65 °C and resting at 27 °C. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley, Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society.]

2.31 Saturated vapour concentration and surface temperature profile of mango tissues during intermittent drying at a drying air temperature of 65 °C and resting at 27 °C. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley, Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society.]

2.32 Surface and saturated vapour concentration profile of mango tissues during intermittent drying at a drying air temperature of 65 °C and resting at 27 °C. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley, Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society.]

2.33 Surface vapour concentration and surface temperature profile of mango tissues during intermittent drying at a drying air temperature of 65 °C and resting at 27 °C. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley,
Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society].

2.34 Moisture content profile of intermittent drying of mango tissues with heating (at a drying air temperature of 45 °C) and resting periods of 4000 s each. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley, Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society.]

2.35 Saturated vapour concentration and surface temperature profile of intermittent drying of mango tissues with heating (at a drying air temperature of 45 °C) and resting periods of 4000 s each. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley, Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society.]

2.36 Surface vapour concentration and surface temperature profile of intermittent drying of mango tissues with heating (at a drying air temperature of 45 °C) and resting periods of 4000 s each. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley, Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society.]

2.37 Surface and saturated vapour concentration profile of intermittent drying of mango tissues with heating (at a drying air temperature of 45 °C) and resting periods of 4000 s each. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley, Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society.]

2.38 Surface vapour concentration and surface relative humidity profile of intermittent drying of mango tissues with heating (at a drying air temperature of 45 °C) and resting periods of 4000 s each. [Reprinted from Industrial Engineering Chemistry Research, 50, A. Putranto, Z. Xiao, X.D. Chen and P.A. Webley, Intermittent drying of mango tissues: Implementation of the reaction engineering approach, 1089–1098, Copyright (2012), with permission from the American Chemical Society.]

2.39 The relative activation energy (ΔE_e/ΔE_e,b) of the convective drying of kaolin. [Reprinted from Chemical Engineering Science, 66, A. Putranto, X.D. Chen, S. Devahastin et al., Application of the reaction engineering
approach (REA) for modelling intermittent drying under time-varying humidity and temperature, 2149–2156, Copyright (2012), with permission from Elsevier.

2.40 Moisture content profile of intermittent drying in Case 1 (periodically changed drying air temperatures between 65–43 °C). [Reprinted from Chemical Engineering Science, 66, A. Putranto, X.D. Chen, S. Devahastin et al., Application of the reaction engineering approach (REA) for modelling intermittent drying under time-varying humidity and temperature, 2149–2156, Copyright (2012), with permission from Elsevier.]

2.41 Temperature profile of intermittent drying in Case 1 (periodically changed drying air temperatures between 65–43 °C). [Reprinted from Chemical Engineering Science, 66, A. Putranto, X.D. Chen, S. Devahastin et al., Application of the reaction engineering approach (REA) for modelling intermittent drying under time-varying humidity and temperature, 2149–2156, Copyright (2012), with permission from Elsevier.]

2.42 Moisture content profile of intermittent drying in Case 2 (periodically changed drying air temperatures between 100–50 °C). [Reprinted from Chemical Engineering Science, 66, A. Putranto, X.D. Chen, S. Devahastin et al., Application of the reaction engineering approach (REA) for modelling intermittent drying under time-varying humidity and temperature, 2149–2156, Copyright (2012), with permission from Elsevier.]

2.43 Temperature profile of intermittent drying in Case 2 (periodically changed drying air temperatures between 100–50 °C). [Reprinted from Chemical Engineering Science, 66, A. Putranto, X.D. Chen, S. Devahastin et al., Application of the reaction engineering approach (REA) for modelling intermittent drying under time-varying humidity and temperature, 2149–2156, Copyright (2012), with permission from Elsevier.]

2.44 Moisture content profile of intermittent drying in Case 3 (periodically changed relative humidity between 4–12%). [Reprinted from Chemical Engineering Science, 66, A. Putranto, X.D. Chen, S. Devahastin et al., Application of the reaction engineering approach (REA) for modelling intermittent drying under time-varying humidity and temperature, 2149–2156, Copyright (2012), with permission from Elsevier.]

2.45 Temperature profile of intermittent drying in Case 3 (periodically changed relative humidity between 4–12%). [Reprinted from Chemical Engineering Science, 66, A. Putranto, X.D. Chen, S. Devahastin et al., Application of the reaction engineering approach (REA) for modelling intermittent drying under time-varying humidity and temperature, 2149–2156, Copyright (2012), with permission from Elsevier.]
List of figures

2.46 Moisture content profile of intermittent drying in Case 4 (periodically changed relative humidity between 4–80%). [Reprinted from Chemical Engineering Science, 66, A. Putranto, X.D. Chen, S. Devahastin et al., Application of the reaction engineering approach (REA) for modelling intermittent drying under time-varying humidity and temperature, 2149–2156, Copyright (2012), with permission from Elsevier.]

2.47 Temperature profile of intermittent drying in Case 4 (periodically changed relative humidity between 4–80%). [Reprinted from Chemical Engineering Science, 66, A. Putranto, X.D. Chen, S. Devahastin et al., Application of the reaction engineering approach (REA) for modelling intermittent drying under time-varying humidity and temperature, 2149–2156, Copyright (2012), with permission from Elsevier.]

2.48 Relative activation energy $\left(\frac{\Delta E_v}{\Delta E_{v,b}}\right)$ of the dehydration of wood during heat treatment generated from the experimental data in Case 2 (refer to Table 2.10). [Reprinted from Bioresource Technology, 102, A. Putranto, X.D. Chen, Z. Xiao and P.A. Webley, Modelling of high-temperature treatment of wood by using the reaction engineering approach (REA), 6214–6220, Copyright (2012), with permission from Elsevier.]

2.49 Moisture content profiles during the heat treatment of Cases 1 to 3 (refer to Table 2.10). [Reprinted from Bioresource Technology, 102, A. Putranto, X.D. Chen, Z. Xiao and P.A. Webley, Modelling of high-temperature treatment of wood by using the reaction engineering approach (REA), 6214–6220, Copyright (2012), with permission from Elsevier.]

2.50 Temperature profiles during the heat treatment of Cases 1 to 3 (refer to Table 2.10). [Reprinted from Bioresource Technology, 102, A. Putranto, X.D. Chen, Z. Xiao and P.A. Webley, Modelling of high-temperature treatment of wood by using the reaction engineering approach (REA), 6214–6220, Copyright (2012), with permission from Elsevier.]

2.51 Moisture content profiles during the heat treatment of Cases 4 and 5 (refer to Table 2.10). [Reprinted from Bioresource Technology, 102, A. Putranto, X.D. Chen, Z. Xiao and P.A. Webley, Modelling of high-temperature treatment of wood by using the reaction engineering approach (REA), 6214–6220, Copyright (2012), with permission from Elsevier.]

2.52 Temperature profiles during the heat treatment of Cases 4 and 5 (refer to Table 2.10). [Reprinted from Bioresource Technology, 102, A. Putranto, X.D. Chen, Z. Xiao and P.A. Webley, Modelling of high-temperature treatment of wood by using the reaction engineering approach (REA), 6214–6220, Copyright (2012), with permission from Elsevier.]

2.53 The relative activation energy $\left(\frac{\Delta E_v}{\Delta E_{v,b}}\right)$ of baking of thin layer of cake at an oven temperature of 100 °C. [Reprinted from Journal of Food Engineering, 105, A. Putranto, X.D. Chen and W. Zhou, Modelling of
List of figures

2.54 Moisture content profiles at baking temperatures of 100, 140 and 160 °C. [Reprinted from Journal of Food Engineering, 105, A. Putranto, X.D. Chen and W. Zhou, Modelling of baking of cake using the reaction engineering approach (REA), 306–311, Copyright (2012), with permission from Elsevier.]

2.55 Moisture content profiles at baking temperatures of 50 and 80 °C. [Reprinted from Journal of Food Engineering, 105, A. Putranto, X.D. Chen and W. Zhou, Modelling of baking of cake using the reaction engineering approach (REA), 306–311, Copyright (2012), with permission from Elsevier.]

2.56 Temperature profiles at baking temperatures of 100, 140 and 160 °C. [Reprinted from Journal of Food Engineering, 105, A. Putranto, X.D. Chen and W. Zhou, Modelling of baking of cake using the reaction engineering approach (REA), 306–311, Copyright (2012), with permission from Elsevier.]

2.57 Temperature profiles at baking temperatures of 50 and 80 °C. [Reprinted from Journal of Food Engineering, 105, A. Putranto, X.D. Chen and W. Zhou, Modelling of baking of cake using the reaction engineering approach (REA), 306–311, Copyright (2012), with permission from Elsevier.]

2.58 Heat transfer mechanisms of convective and infrared-heat drying. [Reprinted from Chemical Engineering and Processing: Process Intensification, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2012), with permission from Elsevier.]

2.59 Moisture content profile of convective and infrared drying at an air temperature of 35 °C, air velocity of 1 m s⁻¹, air relative humidity of 18% and intensity of infrared drying of 3700 W m⁻². [Reprinted from Chemical Engineering and Processing: Process Intensification, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2012), with permission from Elsevier.]

2.60 Product temperature profile of convective and infrared drying at an air temperature of 35 °C, air velocity of 1 m s⁻¹, air relative humidity of 18% and intensity of infrared drying of 3700 W m⁻². [Reprinted from Chemical Engineering and Processing: Process Intensification, 49, A. Putranto, X.D. Chen and P.A. Webley, Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture – The reaction engineering approach (REA), 348–357, Copyright (2012), with permission from Elsevier.]
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.61</td>
<td>Sensitivity of the moisture content profile of cyclic drying, Case 1 (refer to Table 2.12) towards n (on Equation 2.12.1). [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]</td>
<td>106</td>
</tr>
<tr>
<td>2.62</td>
<td>Sensitivity of the temperature profile of cyclic drying, Case 1 (refer to Table 2.12) towards n (on Equation 2.12.1). [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]</td>
<td>107</td>
</tr>
<tr>
<td>2.63</td>
<td>Moisture content profile of cyclic drying, Case 1 (refer to Table 2.12) using the first scheme (T^* as function of infrared intensity) with $n = 1.8$. [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]</td>
<td>108</td>
</tr>
<tr>
<td>2.64</td>
<td>Temperature profile of cyclic drying, Case 1 (refer to Table 2.12) using the first scheme (T^* as function of infrared intensity) with $n = 1.8$. [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]</td>
<td>109</td>
</tr>
<tr>
<td>2.65</td>
<td>Sensitivity of the moisture content profile of cyclic drying, Case 1 (refer to Table 2.12) towards q (on Equation 2.12.3). [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]</td>
<td>110</td>
</tr>
<tr>
<td>2.66</td>
<td>Sensitivity of the temperature profile of cyclic drying, Case 1 (refer to Table 2.12) towards q (on Equation 2.12.3). [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]</td>
<td>110</td>
</tr>
</tbody>
</table>
| 2.67 | Moisture content profile of cyclic drying, Case 1 (refer to Table 2.12) using the second scheme ($\Delta E_{v,b}$ as function of infrared intensity) with $q = 1.8$. [Reprinted from *Chemical Engineering Science*, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of
List of figures

polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.

2.68 Temperature profile of cyclic drying, Case 1 (refer to Table 2.12) using the second scheme ($\Delta E_{v,b}$ as function of infrared intensity) with $q = 1.8$. [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]

2.69 Moisture content profile of cyclic drying, Case 2 (refer to Table 2.12) using the first scheme (T^* as function of infrared intensity) with $n = 1.5$. [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]

2.70 Temperature profile of cyclic drying, Case 2 (refer to Table 2.12) using the first scheme (T^* as function of infrared intensity) with $n = 1.5$. [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]

2.71 Moisture content profile of cyclic drying, Case 2 (refer to Table 2.12) using the second scheme ($\Delta E_{v,b}$ as function of infrared intensity) with $q = 1.5$. [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]

2.72 Temperature profile of cyclic drying, Case 2 (refer to Table 2.12) using the second scheme ($\Delta E_{v,b}$ as function of infrared intensity) with $q = 1.5$. [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]

2.73 Moisture content profile of cyclic drying, Case 3 (refer to Table 2.12) using the first scheme (T^* as function of infrared intensity) with $n = 1.6$. [Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]
2.74 Temperature profile of cyclic drying, Case 3 (refer to Table 2.12) using the first scheme \((T^*\text{ as function of infrared intensity})\) with \(n = 1.6\).

[Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]

115

2.75 Moisture content profile of cyclic drying, Case 3 (refer to Table 2.12) using the second scheme \((\Delta E_{v,b} \text{ as function of infrared intensity})\) with \(q = 1.6\).

[Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]

115

2.76 Temperature profile of cyclic drying, Case 3 (refer to Table 2.12) using the second scheme \((\Delta E_{v,b} \text{ as function of infrared intensity})\) with \(q = 1.6\).

[Reprinted from Chemical Engineering Science, 65, A. Putranto, X.D. Chen and P.A. Webley, Application of the reaction engineering approach (REA) to model cyclic drying of thin layers of polyvinyl alcohol (PVA)/glycerol/water mixture, 5193–5203, Copyright (2012), with permission from Elsevier.]

116

3.1 Schematic diagram of a cube dried in a uniform convective environment.

122

3.2 Moisture content profiles of the convective drying of mango tissues at a drying air temperature of 45 °C solved by the method of lines with 10 and 200 spatial increments.

[Reprinted from AIChE Journal, 59, Aditya Putranto, Xiao Dong Chen, Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials, 55–67, Copyright (2012), with permission from John Wiley & Sons Inc.]

131

3.3 Average moisture content profiles of mango tissues during convective drying at different drying air temperatures.

[Reprinted from AIChE Journal, 59, Aditya Putranto, Xiao Dong Chen, Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials, 55–67, Copyright (2012), with permission from John Wiley & Sons Inc.]

134

3.4 Centre temperature profiles of mango tissues during convective drying at different drying air temperatures.

[Reprinted from AIChE Journal, 59, Aditya Putranto, Xiao Dong Chen, Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials, 55–67, Copyright (2012), with permission from John Wiley & Sons Inc.]

134

3.5 Spatial moisture content profiles of mango tissues during convective drying at drying air temperatures of 45 °C.

[Reprinted from AIChE Journal, 59, Aditya Putranto, Xiao Dong Chen, Spatial reaction
List of figures

Engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials, 55–67, Copyright (2012), with permission from John Wiley & Sons Inc.

3.6 Spatial water vapour concentration profiles of mango tissues during convective drying at drying air temperatures of 45 °C. [Reprinted from AIChE Journal, 59, Aditya Putranto, Xiao Dong Chen, Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials, 55–67, Copyright (2012), with permission from John Wiley & Sons Inc.]

3.7 Spatial temperature profiles of mango tissues during convective drying at drying air temperatures of 45 °C. [Reprinted from AIChE Journal, 59, Aditya Putranto, Xiao Dong Chen, Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials, 55–67, Copyright (2012), with permission from John Wiley & Sons Inc.]

3.8 Profiles of evaporation rates inside mango tissues during convective drying at a drying air temperature of 55 °C. [Reprinted from AIChE Journal, 59, Aditya Putranto, Xiao Dong Chen, Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials, 55–67, Copyright (2012), with permission from John Wiley & Sons Inc.]

3.9 Moisture content profiles in the core and cortex during convective drying of potato tissues with a diameter of 1.4 cm. [Reprinted from AIChE Journal, 59, Aditya Putranto, Xiao Dong Chen, Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials, 55–67, Copyright (2012), with permission from John Wiley & Sons Inc.]

3.10 Moisture content profiles in the core and cortex during convective drying of potato tissues with a diameter of 2.8 cm. [Reprinted from AIChE Journal, 59, Aditya Putranto, Xiao Dong Chen, Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials, 55–67, Copyright (2012), with permission from John Wiley & Sons Inc.]

3.11 Core temperature profiles during convective drying of potato tissues with a diameter of 1.4 cm. [Reprinted from AIChE Journal, 59, Aditya Putranto, Xiao Dong Chen, Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials, 55–67, Copyright (2012), with permission from John Wiley & Sons Inc.]

3.12 Average moisture content profiles of mango tissues during intermittent drying at different drying air temperatures.

3.13 Spatial moisture content profiles of mango tissues during intermittent drying at a drying air temperature of 55 °C.
3.14 Spatial water vapour concentration profiles of mango tissues during intermittent drying at a drying air temperature of 55 °C. 144
3.15 Centre temperature profiles of mango tissues during intermittent drying at different drying air temperatures. 145
3.16 Spatial temperature profiles of mango tissues during intermittent drying at a drying air temperature of 55 °C. 146
3.17 Profiles of evaporation rate inside mango tissues during intermittent drying at a drying air temperature of 55 °C. 147
3.18 Profiles of average moisture content during heat treatment in Case 2 (refer to Table 3.5) solved by the method of lines using 10 and 100 increments. 151
3.19 Effect of liquid diffusivity on profiles of the moisture content during heat treatment in Case 1 (refer to Table 3.5). 152
3.20 Effect of liquid diffusivity on profiles of temperature during heat treatment in Case 1 (refer to Table 3.5). 152
3.21 Profiles of average moisture content during heat treatment in Case 1 (refer to Table 3.5). 153
3.22 Profiles of temperature during heat treatment in Case 1 (refer to Table 3.5). 153
3.23 Profiles of average moisture content during heat treatment in Case 2 (refer to Table 3.5). 154
3.24 Profiles of temperature during heat treatment in Case 2 (refer to Table 3.5). 155
3.25 Profiles of spatial moisture content during heat treatment in Case 2 (refer to Table 3.5). 155
3.26 Profiles of spatial water vapour concentration during heat treatment in Case 2 (refer to Table 3.5). 156
3.27 Profiles of spatial temperature during heat treatment in Case 2 (refer to Table 3.5). 157
3.28 Profiles of average moisture content during the baking of bread at a baking temperature of 150 °C. 161
3.29 Spatial profiles of moisture content during the baking of bread at a baking temperature of 150 °C and air velocity of 10 m s\(^{-1}\). 162
3.30 Spatial profiles of concentration of water vapour during the baking of bread at a baking temperature of 150 °C and air velocity of 10 m s\(^{-1}\). 162
3.31 Profiles of top and bottom surface temperatures during the baking of bread at a baking temperature of 150 °C and air velocity of 1 m s\(^{-1}\). 163
3.32 Spatial profiles of temperature during the baking of bread at a baking temperature of 150 °C and air velocity of 10 m s\(^{-1}\). 163
4.1 Experimental setup for convective drying of porcine skin. [Reprinted from *Chemical Engineering Research and Design*, 87, S. Kar, X.D. Chen, B.P. Adhikari and S.X.Q. Lin, The impact of various drying kinetics models on the prediction of sample temperature–time and
List of figures

4.2 (a) Overview of a sample/plate assembly for convective drying of porcine skin. (b) Detailed of layering structure of sample support. [Reprinted from Chemical Engineering Research and Design, 87, S. Kar, X.D. Chen, B.P. Adhikari and S.X.Q. Lin, The impact of various drying kinetics models on the prediction of sample temperature–time and moisture content–time profiles during moisture removal from stratum corneum, 739–755, Copyright (2012), with permission from Elsevier.]

4.3 Moisture content profiles from the convective drying of mango tissues modelled using the L-REA and diffusion-based model (Vaquiro et al., 2009). [Reprinted from Drying Technology, 29, A. Putranto, X.D. Chen and P.A. Webley, Modelling of Drying of Food Materials with Thickness of Several Centimeters by the Reaction Engineering Approach (REA), 961–973, Copyright (2012), with permission from Taylor & Francis Ltd.]

4.4 Temperature profiles from convective drying of mango tissues modelled using the L-REA and diffusion-based model (Vaquiro et al., 2009). [Reprinted from Drying Technology, 29, A. Putranto, X.D. Chen and P.A. Webley, Modelling of drying of food materials with thickness of several centimeters by the reaction engineering approach (REA), 961–973, Copyright (2012), with permission from Taylor & Francis Ltd.]

4.5 Moisture content profiles from the convective drying of mango tissues modelled using the S-REA and diffusion-based model (Vaquiro et al., 2009). [Reprinted from AIChE Journal, A. Putranto and X.D. Chen, Spatial reaction engineering approach as an alternative for non-equilibrium multiphase mass-transfer model for drying of food and biological materials, DOI 10.1002/aic.13808, Copyright (2012), with permission from John Wiley & Sons, Inc.]

4.6 Temperature profiles from the convective drying of mango tissues modelled using the S-REA and diffusion-based model (Vaquiro et al., 2009). [Reprinted from AIChE Journal, A. Putranto and X.D. Chen, Spatial reaction engineering approach as an alternative for non-equilibrium multiphase mass-transfer model for drying of food and biological materials, DOI 10.1002/aic.13808, Copyright (2012), with permission from John Wiley & Sons, Inc.]

4.7 Moisture content profiles from the heat treatment of wood modelled using the L-REA and Luikov’s approach. [Reprinted from Bioresource Technology, 102, A. Putranto, X.D. Chen, Z. Xiao and P.A. Webley, Modelling of high-temperature treatment of wood by using the reaction engineering approach (REA), 6214–6220, Copyright (2012), with permission from Elsevier.]

4.8 Temperature profiles from the heat treatment of wood modelled using the L-REA and Luikov’s approach. [Reprinted from Bioresource Technology, 102, A. Putranto, X.D. Chen, Z. Xiao and P.A. Webley,
List of figures

Modelling of high-temperature treatment of wood by using the reaction engineering approach (REA), 6214–6220, Copyright (2012), with permission from Elsevier.

4.9 Moisture content profiles from the heat treatment of wood (refer to Table 4.1) modelled using the L-REA and Whitaker's approach. [Reprinted from Bioresource Technology, 102, A. Putranto, X.D. Chen, Z. Xiao and P.A. Webley, Modelling of high-temperature treatment of wood by using the reaction engineering approach (REA), 6214–6220, Copyright (2012), with permission from Elsevier.]

4.10 Temperature profiles from the heat treatment of wood (refer to Table 4.1) modelled using the L-REA and Whitaker's approach. [Reprinted from Bioresource Technology, 102, A. Putranto, X.D. Chen, Z. Xiao and P.A. Webley, Modelling of high-temperature treatment of wood by using the reaction engineering approach (REA), 6214–6220, Copyright (2012), with permission from Elsevier.]

4.11 Moisture content profile from the heat treatment of wood modelled using the S-REA and Luikov's approach.

4.12 Temperature profile from the heat treatment of wood modelled using the S-REA and Luikov's approach.

4.13 Moisture content profiles from the heat treatment of wood (refer to Table 4.1) modelled using the S-REA and Whitaker's approach.

4.14 Temperature profiles from the heat treatment of wood (refer to Table 4.1) modelled using the S-REA and Whitaker's approach.
Tables

2.1 Experimental conditions of convective drying of a mixture of polymer solutions (Allanic et al., 2009).
2.2 R^2 and RMSE of modelling of a mixture of polymer solutions using the L-REA.
2.3 Experimental conditions of convective drying of mango tissues (Vaquiro et al., 2009).
2.4 R^2 and RMSE of modelling of convective drying of mango tissues using the L-REA.
2.5 Schemes of intermittent drying of mango tissues (Vaquiro et al., 2009).
2.6 R^2 and RMSE of modelling of intermittent drying of mango tissues using the L-REA.
2.7 Settings of intermittent drying of kaolin (Kowalski and Pawlowski, 2010).
2.8 R^2, RMSE, average absolute deviation and maximum absolute deviation of profiles of moisture content predicted by and Kowalski and Pawlowski’s model (2010b).
2.9 R^2, RMSE, average absolute deviation and maximum absolute deviation of profiles of temperature predicted by Kowalski and Pawlowski’s model (2010b).
2.10 Settings of heat treatment of wood samples (Younsi et al., 2006a; 2007).
2.11 R^2 of modelling using the REA.
2.12 The experimental conditions of intermittent drying of a mixture of polymer solutions.
3.1 Experimental conditions of convective drying of mango tissues (Vaquiro et al., 2009).
3.2 R^2 and RMSE of convective drying of mango tissues using the S-REA.
3.3 Scheme of intermittent drying of mango tissues (Vaquiro et al., 2009).
3.4 R^2 and RMSE of intermittent drying of mango tissues.
3.5 Experimental settings of wood heating under a constant heating rate (Younsi et al., 2007).
3.6 R^2 and RMSE of modelling of heat treatment of wood under a constant heating rate using the S-REA.
4.1 Experimental settings of the heat treatment of wood (Younsi et al., 2007).
Preface

Drying is one of the oldest and most effective methods for preserving food and biological materials. Low moisture content in foods prevents the growth of bacteria responsible for their deterioration so foods can have extended shelf-lives. When foods became abundant, trade became possible. Today, dried products are the main materials trading round the world but this is not limited to food products. Construction materials, textiles, electronic parts and appliances, biomass-based fuels, pharmaceutics and many other materials important to our daily lives and the business world are all included. Essentially over 80% of the products on Earth require drying as one of the steps in their production. Product quality and process parameters are interactive. Industrial drying is energy hungry; a process involving simultaneous heat, mass transfer and momentum transfer. Product quality is determined through compositional and structural rearrangements, as well as chemical reactions in some circumstances. For existing drying facilities, optimisation is often needed to achieve new goals such as energy reduction, quality improvements and development of new materials. There are also opportunities in designing dryer modifications or even brand new dryers that are superior in performance over conventional devices. Modelling of drying processes is very useful for these purposes.

A number of drying models have been proposed, which are conveniently classified into empirical and mechanistic models. The empirical models give advantages of being simple in their mathematical formulation. However, these models most often cannot explain the physics of drying and their application is limited since they are valid only for a particular set of drying conditions. On the other hand, the mechanistic models are derived based on fundamental phenomena that occur during drying. These phenomena are crucial in material science (and materials processing) though material scientists themselves may not have yet come to appreciate the process engineering aspects which impact on the product microstructure. Some of these models can capture the physics well. These models are, however, often mathematically complex and sometimes contain too many parameters, which need to be determined experimentally (prior to model predictions).

For some decades now, a comprehensive set of macroscopic equations has been developed and used to address heat and mass transfer and mechanical aspects related to drying. The application of macroscopic descriptions of drying (temperature, moisture and sometimes pressure) has been perfected over the past two decades, and relevance has been confirmed in many drying configurations. Some of these involve irreversible thermodynamics formulations, which are lengthy and have many model coefficients. These have
become the ‘classical’ approach. However, this classical approach has serious limitations. The concept of multi-scale and multi-physics addresses some of these limitations, e.g. coupled meso-scale and equipment scale problems. When a local thermodynamic equilibrium is not attained, however, the time scales usually overlap. This is a real multi-scale configuration and challenging in terms of the great demand in computational power and handling of mathematics. Several scales can be considered simultaneously, ranging from simple exchanges between macroscopic phases to comprehensive formulations in which time evolution of microscopic values and microscopic gradients is considered over a representative elementary volume, according to a recent review by Patrick Perre (for a review of modern computational and experimental tools relevant to the field of drying, see *Drying Technology*, 29, 1529–1541, 2011).

While exploring the detailed physics involved in drying using these multi-scale and multi-physics approaches, it is, from an engineering viewpoint, also important to develop new ideas establishing simpler models. In general, today industrial drying applications require mathematical models that are simple and easy to use. For practical purposes, an effective drying model should be simple, accurate, and able to capture the major physics of drying and its application should be robust. This model should also favour short computation time and it should be easy to establish parameters needed (experimentally) to help quicker decision-making in an industry environment (and with the lowest cost).

The reaction engineering approach (REA), which is a ‘middle path’ approach, perhaps between the empirical and the mechanistic models, was first thought about by the first author of this book, Chen, in 1996. Through much of the research on its possible applications, it has been revealed that the REA is indeed simple, accurate and robust enough to model many cases of drying, i.e., drying in a constant or variable environment. The REA has also been implemented in industry for prediction of spray dryer performance and shows good agreement with plant data for different scales in the dairy industry. It has also been extended to various other challenging systems of drying, such as polymer drying, intermittent drying, thermal-thick materials, infrared heating and microwave heating. The model is significantly easier to implement and requires less experimentation effort to establish the parameters needed, compared with the more fundamental models. The REA was first taken as a lumped model which does not need us to resolve the spatial distribution of water content, etc.; the lumped-REA (or L-REA), but in recent times, we have also extended the approach to describe spatially distributed systems; spatial-REA (or S-REA).

The REA approach has been initiated and exercised over the past 12 years and there is a significant amount of successful applications already illustrated. As mentioned earlier, it is a middle path between the rigorous theory that requires high-level mathematics and the empirical models that do not represent much physics. We can see, through our own practices and from other colleagues in the same area who have used the REA concept, it is a really straightforward approach to modelling some rather complex drying processes; hence, it is simple and cost-effective to establish accurate REA models to use in industry.

This book is the most fundamental and comprehensive description of the REA approach to drying modelling – the basic idea, rationale, mathematical description and implementation procedures – for various systems. This approach has been extended,
and experimented with, by several quality Ph.D. graduates, in particular, the second author, Aditya Putranto. Regarding the other more established theories, this book not only provides essential details so the readers can refer to them but also illustrates, by comparison, the physics involved in REA concepts. The disadvantages and advantages between theories are also briefly introduced. The book should benefit both academics in drying research and practicing engineers in industry. Undergraduate students in process engineering may also find it useful for quickly setting up a drying model for design purposes. The main emphasis of this book is how to apply the REA to reality. The book will also elaborate on potential applications of similar thinking to more complex reactive systems that couple with drying processes, hopefully to foster their future development.

Here, the modern ideas of microstructure development and product qualities created by drying processes, and in turn their impacts on moisture transfer, will be introduced. This should make the book more relevant in years to come.

Xiao Dong Chen and Aditya Putranto
Historical background

During my Ph.D. study in the Chemical and Process Engineering Department at Canterbury University, Christchurch, New Zealand, (1988–1990), the main task was to establish mechanistically the understanding of moisture influence on coal oxidation and the impact of moisture transfer in a packed coal particle bed on the development of spontaneous combustion. The experimental aspect was challenging both technically and physically. In addition to coal oxidation and its racemic measurement, I became very interested in the mechanisms of water evaporation and moisture transfer (liquid and vapour) in porous material. Dr Jim Stott (Reader of Chemical Engineering) was my main supervisor and Dr John Abrahamson (Senior Lecturer), in the same department, was my cosupervisor. Jim published some of the pioneering literature on the subject of spontaneous combustion of coal (1959) and built (largely by himself) ingenious experimental rigs. Dr Abrahamson was an inspirational and distinguished individual as well who has been credited as one of the first to have made a carbon nanotube (he called it the ‘carbon cylinder’) (1978), a theory of ball lightening (2000) and a theory of particle collision frequency in a turbulent field (1972). John was Jim’s student some years back.

Working with Jim on the subject of spontaneous combustion development in a moist coal bed has taught me that if the coal bed were completely saturated with water vapour under near ambient pressure (the institutional voids of the bed remain saturated with water vapour), the maximum temperature would remain at around 80°C. This was predicted from a numerical spontaneous combustion model involving mass transfer of moisture within the coal bed when assuming the vapour concentration in the bed is always saturated. Jim discovered this in the late 1960s, and later, in the 1970s, a Ph.D. student of his proved this more comprehensively. This aspect was more or less republished in 1990s by a research group in Europe (who were perhaps unaware of the work by Jim and his ex-students). However, if an equilibrium relationship between moisture content in the coal particles and vapour concentration in the air surrounding the particles can be adopted, a dry spot can be predicted and the maximum temperature will exceed the boiling temperature of water, therefore rising to an elevated temperature due to oxidation heat (Chen, 1992a). Of course, there are also other influences such as porosity, oxidation rate and oxygen transfer, heat transfer and, sometimes, fluid flow due to a pressure gradient. Nevertheless, this equilibrium relationship is what we are now so familiar with, termed the equilibrium isotherm in drying literature. The oxidation rate of coal itself was also found, in my own experiments, to vary with the residual water content (Chen and Stott, 1993) and I had gone to extra lengths to try to understand this