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CHAPTER

ONE

Problem solving in structural geology

1.1 OBJECTIVES OF STRUCTURAL ANALYSIS

In structural analysis, a fundamental objective is to describe as accurately as possible the

geological structures in which we are interested. Commonly, we want to quantify three types

of observations.

Orientations are the angles that describe how a line or plane is positioned in space. We

commonly use either strike and true dip or true dip and dip direction to define planes, and trend

and plunge for the orientations of lines (Fig. 1.1). The trend of the true dip is always at 90� to the

strike, but the true dip is not the only angle that we can measure between the plane and the

horizontal. An apparent dip is any angle between the plane and the horizontal that is not

measured perpendicular to strike. For example, the angle labeled “plunge” in Figure 1.1 is

also an apparent dip because line A lies in the gray plane. Strike, dip direction, and trend are

all horizontal azimuths, usually measured with respect to the geographic north pole of the

Earth. Dip and plunge are vertical angles measured downwards from the horizontal. Where a

line lies in an inclined plane, we also use a measure known as the rake or the pitch, which is the

angle between the strike direction and the line. There are few things more fundamental to

structural geology than the accurate description of these quantities.

Whereas orientations are described using angles only, magnitudes describe how big, or

small, the quantity of interest is. Magnitudes are, essentially, dimensions and thus have units

of length, area, or volume. Some examples of magnitudes include the amplitude of a fold, the

thickness of a bed, the length of a stretched cobble in a deformed conglomerate, the area of

rupture during an earthquake, or the width of a vein. With magnitudes, size matters, whereas

with orientations it does not.

The third type of observation compares both orientation and magnitude of something at

two different times. The difference between an initial and a final state is known as deformation.

Determining deformation involves measuring the feature in the final state and making
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inferences about its size, position, and orientation in the initial state. Deformation is commonly

broken down into translation, rotation, and strain (or distortion) and each can be analyzed

separately (Fig. 1.2), although when strains are large the sequence in which those effects are

analyzed is important.

To determine orientations, magnitudes, or deformations, we need to make measurements.

All measurements have some degree of uncertainty : is the length of that deformed cobble

10.0 or 10.3 cm? Is the strike of bedding on the limb of a fold 047� or 052�? In structural

geology, themeasurements that wemake of natural, inherently irregular objects usually have a

high degree of uncertainty. Typically, uncertainties, or errors, are estimated bymakingmultiple

measurements and averaging the result. However, we often want to calculate a quantity based

on measurements of different quantities. Error propagation allows us to attach meaningful

uncertainties to calculated quantities; this important operation is the subject of Chapter 12.

A complete structural analysis, of course, involves much more than just orientations,

magnitudes, and deformations. These quantities tell us the “what” but not the “why.” They

may tell us that the rocks surrounding pyrite grains and curved pressure shadows suffered a

rotation of 37� and a stretch of 2, but they tell us nothing about why the deformation occurred

nor, for example, why the rocks surrounding the pyrite changed shape continuously whereas

the pyrite itself did not deform at all. Nor does the fact that a thrust belt was shortened

Figure 1.1 Three-dimensional perspective diagram showing the definition of typical

structural geology terms. Strike and dip give the orientation of the gray plane with

respect to geographic north (N) and the horizontal. Trend and plunge describe the

orientation of line A. Because line A lies within the gray plane, we can specify the rake,

the angle that the line makes with respect to the strike of the plane. The pole or normal

vector is perpendicular to the plane. Note that because dip andplunge aremeasured from

the horizontal, there is an implicit sign convention that down is positive and up negative.

2 Problem solving in structural geology
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horizontally by 50% tell us anything about why the thrust belt formed in the first place. This

complete understanding of structures is beyond the scope of this book, but the reader should

never lose sight of the fact that accurate description based onmeasurements and their errors is

just one aspect of a modern structural analysis.

1.2 ORTHOGRAPHIC PROJECTION AND PLANE TRIGONOMETRY

The methods we use to describe structures serve another purpose besides just providing an

answer to a problem: They help us visualize complex, three-dimensional forms, thereby giving

us a better intuitive understanding. Thus, many structural methods are graphical in nature, or

are simple plane trigonometry solutions that have been derived from graphical constructions.

Maps and cross sections constitute some of our most basic ways of graphically representing

structural data and interpretations. Simpler graphical constructions using folding lines, front,

side, and top views, etc. help us to visualize structures in three dimensions (Fig. 1.3). Until the

1980s,most structural geologists did not have knowledge of, or access to, the computing power

needed to analyze complicated structural problems in any way except via graphical methods.

Graphical methods, including spherical projection, were necessary to reduce complex

three-dimensional geometries to two-dimensional sheets of paper.

Beginning structural geology students typically learn two types of graphical constructions:

orthographic and spherical projections. In orthographic projection, one views the simple three-

dimensional geometries as if they formed the sides of a box. Because one can onlymeasure true

angleswith a protractorwhen looking perpendicularly downon the surface inwhich they occur,

the sides of the box have to be unfolded before one can measure the angles of interest.

Consider the problem depicted in Figure 1.3: The gray plane has a strike, a true dip, δ,

measured in a direction perpendicular to the strike, and an apparent dip, α, in a different

direction. If one knows two out of the three quantities – the strike, true dip, and apparent dip –

one can determine the third quantity. In orthographic projection, the true dip direction and the

apparent dip direction are used as folding lines; they are literally like the creases on an unfolded

Figure 1.2 The three components of

deformation – (a) translation, (b) rotation, and

(c) strain – all require the comparison of an

initial and a final state.

1.2 Orthographic projection and plane trigonometry 3
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cardboard box. By folding up the sides so that the top and the two sides all lie in the same plane,

one can simply measure with a protractor whichever angle is needed.

The orthographic projection also provides the geometry necessary for deriving a simple

trigonometric relationship that allows us to solve for the angle of interest by introducing a new

angle from the top of the block (Fig. 1.3b): the angle between the strike and the apparent dip

direction, β. Edge b of the top of the block is equal to

b ¼
h

tanδ

The edge between the top and side 2, a is

a ¼
b

sinβ
¼

h

tanδ sinβ

(a)

h

h

b

(b)

a

h

h

Figure 1.3 (a) Block diagram and (b) orthographic projection illustrating a graphical

approach to the apparent dip problem. The dashed lines corresponding to the true

and apparent dip directions are folding lines along which sides 1 and 2 have been

folded up to lie in the same plane as the top of the block. h is the height of the block,

which is the same everywhere along the strike line. δ;α, and β are the true dip, apparent

dip, and angle between the strike and apparent dip directions, respectively.
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And, from side 2 we get

a ¼
h

tanα

Thus, using plane trigonometry, we can write the equation for the apparent dip:

tanδ sinβ ¼ tanα (1:1)

where δ is the true dip, β the angle between the strike and the apparent dip direction, andα the

apparent dip. Plane trigonometry works very well for simple problems but is more cumber-

some, or more likely impossible, for more complex problems.

A different approach, which has the flexibility to handle more difficult computations, is

spherical trigonometry. To visualize this situation, imagine that the plane in which we are

interested intersects the lower half of a sphere (Fig. 1.4) rather than a box. In general, with

power comes complexity, and spherical trigonometry is no exception. To calculate the apparent

Figure 1.4 (a) Perspective view of a

plane intersecting the lower half of a

sphere. The angular relations are the

same as those shown in Figure 1.3.

The intersection of a sphere with any

plane that goes through its center is a

great circle. (b) Same geometry as in (a)

but viewed from directly overhead as

if one were looking down into the bowl

of the lower hemisphere. View (b) was

constructed using a stereographic

projection. γ is the angle between true

and apparent dip directions and other

symbols are as in Figure 1.3.
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dip, onemust realize that, for the right spherical triangle shown (Fig. 1.4b), we know two angles

(γ, which is the difference between the true and apparent dip directions, and the angle 90

because it is a true dip) and the included side (90 � the true dip δ). Thus, we can calculate the

other side of the triangle (90 � the apparent dip α) from the following equation:

cosγ ¼ tan 90� δð Þ � cot 90�αð Þ (1:2)

A problem with both trigonometric methods is that one must guard against a multitude of

special cases such as taking the tangent of 90�, the sign changes associatedwith sine and cosine

functions, etc. On amore basic level, they give one little insight into the physical nature of what

it is we are trying to determine. For most people, they are merely formulas associated with a

complex geometric construction. And, the mathematical solution to this problem bears no

obvious relation to other, more complicated problems we might wish to solve in structural

geology.

1.3 SOLVING PROBLEMS BY COMPUTATION

One of the primary purposes of this book is to show you how to solve problems in structural

geology by computation. There are many reasons for this emphasis: As a practicing geologist,

you will use computer programs written by other people most of your professional life, so you

should know how those programs work. Furthermore, computation is an important skill for

any modern research scientist and allows you to solve problems that others cannot. Most

importantly, the language of computation is linear algebra, and linear algebra is fundamental

to developing a complete understanding of structures and continuum mechanics.

There are lots of different choices of computer platform and language that one couldmake.

Perhaps simplest would be the humble spreadsheet program. In fact, many of the calculations

that we ask you to do early in the book can easily be done in a spreadsheet program without

even using its programming language (Visual Basic in the case of the popular program Excel).

However, when you get to more complicated programs, spreadsheets are inadequate. Most

commercial software these days is written in C, C++, or a variety of other platforms. In those

programs, implementing the interface – that is, the windows, menus, drawing, dialog boxes,

and so on – commonly takes up 95% ormore of the lines of code. In this book, however, we want

you to focus on the scientific algorithms rather than the interface.

Thus, we have chosen to illustrate this approach using the commercial software package,

MATLAB®. Many universities now teach computer science and scientific computing usingMATLAB,

and many research geologists use MATLAB as their computing platform of choice. Because

MATLAB is an interpreted language, it removes much of the fussiness of traditional compiled

languages such as FORTRAN, Pascal, and C among amyriad of others. MATLAB also allows you to

get results conveniently without worrying about the interface. Youwill be introduced toMATLAB

in the next section, so we wanted to say a few general words about programming and syntax

here.

First, programming languages, including spreadsheets and MATLAB, do trigonometric

calculations in radians, not degrees. The relationship between radians and degrees is

1 radian ¼
180�

p

¼ 57:2957795131�

1� ¼
p

180
¼ 0:0174532925 radians

(1:3)
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The four points of the compass – N, E, S, and W – can be defined in radians quite easily:

North 0� ¼ 0 radians ¼ 360� ¼ 2p radians

East ¼ 90� ¼
p

2
radians

South ¼ 180� ¼ p radians

West ¼ 270� ¼
3p

2
radians

(1:4)

Second, any good computer code should have explanatory comments that tell the reader

what the program is doing and why. Comments are for humans and are totally ignored by the

computer. In all computer languages, a special character precedes comments; in MATLAB, that

character is %, the percent character. We have tried to use comments liberally in this book to

help you understand what is going on in the functions we provide.

In all computer programs, the things to be calculated are held in variables. Variables can

hold a single number, but they can also hold more complicated groups of numbers called

arrays. The best way to think about arrays is that they represent a list of related data (in one

dimension) or a table of related data in two dimensions. Mathematically, arrays are matrices.

When one has their data in an array, repetitive calculations can be made very easily via

what are known as loops. Let’s say we need to add together 25 random numbers. We could

write

x1 + x2 + x3 + x4 + x5 + x6 + x7 + … + x22 + x23 + x24 + x25

Alternatively, one can do this calculation using an array and a loop:

x = randn(1,25); %x is an array of 25 random numbers

Sum = 0; %Initialize a variable to hold the sum of the array elements

for i=1:25 %Start of the loop. i starts at 1 and ends at 25

Sum = Sum + x(i); %Add the current value x(i) to Sum

end %End of the loop

We will see later on in the book that the arrays and loops are what make the marriage of

computing and linear algebra so seamless. Though the above example is trivial, arrays and

loops will really help when we get to something like a tensor transformation that involves nine

equations with nine terms each!

In computer programs, we can also select at run-time which operations or block of code

are executed. We do this through the if control statement. Suppose we want to add the

even but subtract the odd elements of array x. We can do this by modifying the loop above as

follows:

for i=1:25 %Start of the loop. i starts at 1 and ends at 25

if rem(i,2) == 0 %Start if statement. If remainder i/2=zero (i.e., even)

Sum = Sum + x(i); %Add even element to Sum

else %Else if odd element

Sum = Sum - x(i); %Subtract odd element from Sum

end %End of if statement

end %End of the loop

Finally (for now), manymulti-step calculations are repeatedly used in a variety of contexts. Just

as the tangent is used in both Equations 1.1 and 1.2, you can imagine more complicated

calculations being used multiple times with different values. All programming languages

1.3 Solving problems by computation 7
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have a variety of built-in functions, including trigonometric functions. The above code snippets

use two such built-in functions: randn, which assigns random numbers to the array x, and rem,

which determines the remainder of a division by an integer. Programmingmakes it easy towrite

your code in modular snippets that can be reused. You will see multiple examples in this book

where one chunk of code, called a function in MATLAB and a function or subroutine in other

languages, calls another chunk of code. Table 1.1 lists all of the MATLAB functions written

especially for this book and shows which functions call, or are called by, other functions. All

the functions follow the MATLAB help syntax. To get information about one of the functions, for

example function StCoordLine, just type in MATLAB: help StCoordLine

1.4 SPHERICAL PROJECTIONS

The image in Figure 1.4b is known as a spherical projection, which is an elegant way of

representing angular relationships on a sphere on a two-dimensional piece of paper. It should

not be surprising that spherical projections are closely related to map projections, with the

exception that in structural geology we use the lower hemisphere, as shown in Figure 1.4,

whereas map projections use the upper hemisphere. Spherical projections are one of the

most published types of plots in structural geology. They are used to carry out angular

calculations such as rotations, apparent dip problems, and so on, as well as to present orienta-

tion data in papers and reports. Visualizing “stereonets,” as they are commonly called, is one of

the most important tasks a structural geology student can learn.

1.4.1 Data formats in spherical coordinates

Before diving in to stereonets, however, we need to examine briefly how orientations are

generally specified in spherical coordinates (Fig. 1.5). In North America, planes are com-

monly recorded using their strike and dip. But, the strike can correspond to either of two

30°
45°

Plane 1 Format Plane 2

N 15 E, 45 W Quadrant N 15 E, 30 E

015, 45 W Azimuth 015, 30 E

195, 45 Right-hand Rule 015, 30

285, 45 Dip direction & Dip 105, 30

ra
ke

N
15°

Figure 1.5 Common data formats for two planes that share the same strike but dip in

opposite directions. Plane 1 is dark gray and plane 2 light gray. We do not recommend

the quadrant format!
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Chapter Function Description Called by Calls Function(s)

1 StCoordLine Coordinates of a line in an equal angle or equal

area stereonet of unit radius

GreatCircle, SmallCircle,

Bingham, PTAxes

ZeroTwoPi

1 ZeroTwoPi Constrains azimuth to lie between 0 and 2 radians StCoordLine, CartToSph, Pole,

SmallCircle, GeogrToView,

Bingham, InfStrain

2 SphToCart Converts from spherical to Cartesian

coordinates

CalcMV, Angles, Pole, Rotate,

GeogrToView, Bingham, Cauchy,

DirCosAxes, PTAxes

2 CartToSph Converts from Cartesian to spherical

coordinates

CalcMV, Angles, Pole, Rotate,

GeogrToView, Bingham,

PrincipalStress, ShearOnPlane,

InfStrain, PTAxes,FinStrain

ZeroTwoPi

2 CalcMV Calculates the mean vector for a given series of

lines

SphToCart CartToSph

2 Angles Calculates the angles between two lines, between

two planes, etc.

SphToCart, CartToSph, Pole

2 Pole Returns the pole to a plane or the plane that

correspond to a pole

Angles, GreatCircle, Stereonet ZeroTwoPi, SphToCart,

CartToSph

3 DownPlunge Constructs the down plunge projection of a bed

3 Rotate Rotates a line by performing a coordinate

transformation

GreatCircle, SmallCircle SphToCart, CartToSph

3 GreatCircle Computes the great circle path of a plane in an

equal angle or equal area stereonet of unit

radius

Stereonet, Bingham, PTAxes StCoordLine, Pole, Rotate

3 SmallCircle Computes the paths of a small circle defined by its

axis and cone angle, for an equal angle or equal

area stereonet of unit radius

Stereonet ZeroTwoPi, StCoordLine,

Rotate

3 GeogrToView Transforms a line from NED to view direction Stereonet ZeroTwoPi, SphToCart,

CartToSph

3 Stereonet Plots an equal angle or equal area stereonet of unit

radius in any view direction

Bingham, PTAxes Pole, GeogrToView,

SmallCircle, GreatCircle

4 MultMatrix Multiplies two conformable matrices

4 Transpose Calculates the transpose of a matrix

4 CalcCofac Calculates all of the cofactor elements for a

3 × 3 matrix

Determinant

4 Determinant Calculates the determinant and cofactors for a

3 × 3 matrix

Invert CalcCofac

(cont.)
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Chapter Function Description Called by Calls Function(s)

4 Invert Calculates the inverse of a 3 × 3 matrix Determinant

5 Bingham Calculates and plots a cylindrical best fit to a pole

distribution

ZeroTwoPi, SphToCart, CartToSph,

Stereonet, StCoordLine,

GreatCircle

6 Cauchy Computes the tractions on an arbitrarily

oriented plane

ShearOnPlane DirCosAxes, SphToCart

6 DirCosAxes Calculates the direction cosines of a

right-handed, Cartesian coordinate

system of any orientation

Cauchy, PrincipalStress

TransformStress

SphToCart

6 TransformStress Transforms a stress tensor from old to new

coordinates

DirCosAxes

6 PrincipalStress Calculates the principal stresses and their

orientations

ShearOnPlane DirCosAxes, CartToSph

6 ShearOnPlane Calculates the direction and magnitudes

of the normal and shear tractions on an

arbitrarily oriented plane

PrincipalStress, Cauchy,

CartToSph

8 InfStrain Computes infinitesimal strain from an input

displacement gradient tensor

GridStrain CartToSph, ZeroTwoPi

8 PTAxes Computes the P and T axes from the

orientation of fault planes and their slip vectors

SphToCart, CartToSph, Stereonet,

GreatCircle, StCoordLine

8 GridStrain Computes the infinitesimal strain of a network of

stations with displacements in x and y

InfStrain

9 FinStrain Computes finite strain from an input

displacement gradient tensor

CartToSph

10 PureShear Computes displacement paths and progressive

finite strain history for pure shear

10 SimpleShear Computes displacement paths and progressive

finite strain history for simple shear

10 GeneralShear Computes displacement paths and progressive

finite strain history for general shear

10 Fibers Determines the incremental and finite strain

history of a fiber in a pressure shadow

11 FaultBendFold Plots the evolution of a simple step, Mode I fault-

bend fold

SuppeEquation

11 SuppeEquation Equation 11.8 for fault-bend folding FaultBendFold,

FaultBendFold Growth

11 SimilarFold Plots the evolution of a similar fold

11 FixedAxisFPF Plots the evolution of a simple step, fixed axis

fault-propagation fold
(cont.)

11 ParallelFPF SuppeEquationTwo
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