CONTINUUM MECHANICS

This is a modern textbook for courses in continuum mechanics. It provides both the theoretical framework and the numerical methods required to model the behavior of continuous materials. This self-contained textbook is tailored for advanced undergraduate or first-year graduate students with numerous step-by-step derivations and worked-out examples. The author presents both the general continuum theory and the mathematics needed to apply it in practice. The derivation of constitutive models for ideal gases, fluids, solids, and biological materials and the numerical methods required to solve the resulting differential equations are also detailed. Specifically, the text presents the theory and numerical implementation for the finite difference and the finite element methods in the Matlab® programming language. It includes thirteen detailed Matlab® programs illustrating how constitutive models are used in practice.

Dr. Franco M. Capaldi received his PhD in Mechanical Engineering from the Massachusetts Institute of Technology. He taught Mechanical Engineering at Drexel University from 2006 to 2011. He is currently an Associate Professor of Civil and Mechanical Engineering at Merrimack College. His research focuses on the modeling of biological and polymeric materials at various length scales.
Continuum Mechanics

CONSTITUTIVE MODELING OF STRUCTURAL AND BIOLOGICAL MATERIALS

Franco M. Capaldi
Merrimack College
To Irene, Emma, and Nina with love.
Contents

Preface

<table>
<thead>
<tr>
<th>1 Mathematics</th>
<th>page xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Vectors</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Second-Order Tensors</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Eigenvalues and Eigenvectors</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Spectral Decomposition of a Symmetric Tensor</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Coordinate Transformation</td>
<td>18</td>
</tr>
<tr>
<td>1.6 Invariants</td>
<td>24</td>
</tr>
<tr>
<td>1.7 Cayley-Hamilton Theorem</td>
<td>24</td>
</tr>
<tr>
<td>1.8 Scalar, Vector, and Tensor Functions and Fields</td>
<td>25</td>
</tr>
<tr>
<td>1.9 Integral Theorems</td>
<td>30</td>
</tr>
<tr>
<td>Exercises</td>
<td>32</td>
</tr>
<tr>
<td>Matlab® Exercises</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Kinematics</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Configurations</td>
<td>35</td>
</tr>
<tr>
<td>2.2 Velocity and Acceleration</td>
<td>38</td>
</tr>
<tr>
<td>2.3 Displacement</td>
<td>43</td>
</tr>
<tr>
<td>2.4 Deformation Gradient</td>
<td>45</td>
</tr>
<tr>
<td>2.5 Jacobian</td>
<td>51</td>
</tr>
<tr>
<td>2.6 Nanson’s Formula</td>
<td>52</td>
</tr>
<tr>
<td>2.7 Homogenous Deformation, Isochoric Deformation, and Rigid Body Rotation</td>
<td>54</td>
</tr>
<tr>
<td>2.8 Material and Spatial Derivatives</td>
<td>55</td>
</tr>
<tr>
<td>2.9 Polar Decomposition of the Deformation Gradient</td>
<td>58</td>
</tr>
<tr>
<td>2.10 Stretch Ratios</td>
<td>61</td>
</tr>
<tr>
<td>2.11 Left and Right Cauchy Deformation Tensor</td>
<td>63</td>
</tr>
<tr>
<td>2.12 Green Strain Tensor</td>
<td>64</td>
</tr>
<tr>
<td>2.13 Almansi Strain Tensor</td>
<td>64</td>
</tr>
<tr>
<td>2.14 Infinitesimal Strain Tensor</td>
<td>65</td>
</tr>
<tr>
<td>2.15 Velocity Gradient, Rate of Deformation, Vorticity</td>
<td>65</td>
</tr>
</tbody>
</table>
Contents

2.16 Reynolds’ Transport Theorem 68
Exercises .. 71
Matlab® Exercises ... 73

3 The Stress Tensor ... 74
3.1 Mass, Density, and Forces 74
3.2 Traction Vector .. 75
3.3 Cauchy Stress Tensor 77
3.4 First Piola-Kirchhoff Stress Tensor 80
3.5 Second Piola-Kirchhoff Stress Tensor 80
3.6 Maximum Normal and Shear Stress 81
3.7 Decomposition of the Stress Tensor 82
Exercises .. 83

4 Introduction to Material Modeling 85
4.1 Forces and Fields 86
4.2 Balance Laws .. 86
4.2.1 Conservation of Mass 87
4.2.2 Conservation of Linear Momentum 88
4.2.3 Conservation of Angular Momentum 90
4.2.4 Conservation of Energy 93
4.2.5 The Second Law of Thermodynamics 96
4.2.6 Summary of the Field Equations 98
4.3 Stress Power ... 99
4.4 Jump Conditions 100
4.5 Constitutive Modeling 104
4.5.1 Constitutive Modeling Principles 106
4.5.2 Principle of Dissipation 107
4.5.3 Principle of Material Frame Indifference 109
4.6 Material Symmetry 114
4.6.1 Isotropic Scalar-Valued Functions 115
4.6.2 Isotropic Tensor-Valued Functions 116
4.7 Internal Variables 119
4.8 Thermodynamics of Materials 120
4.9 Heat Transfer .. 120
Exercises .. 121

5 Ideal Gas .. 122
5.1 Historical Perspective 122
5.2 Forces and Fields 124
5.3 Balance Laws .. 124
5.4 Constitutive Model 124
5.4.1 Constraints ... 126
5.4.2 Constitutive Relations 127
5.4.3 Molecular Model of an Ideal Gas 129
5.5 Governing Equations 131
Contents

5.6 Acoustic Waves 132
5.6.1 Finite Difference Method 135
5.6.2 Explicit Algorithm 137
5.6.3 Implicit Algorithm 138
5.6.4 Example Problem 140
5.6.5 Matlab® File – Explicit Algorithm 141
5.6.6 Matlab® File – Implicit Algorithm 143

6 Fluids 146
6.1 Historical Perspective 147
6.2 Forces and Fields 148
6.3 Balance Laws 148
6.4 Constitutive Model 149
 6.4.1 Constraints 150
 6.4.2 Constitutive Relations for the Newtonian Fluid 155
 6.4.3 Stokes Condition 157
6.5 Governing Equations 157
 6.5.1 Compressible Newtonian Fluid 158
 6.5.2 Incompressible Newtonian Fluid 159
 6.5.3 Irrotational Steady Flow of an Incompressible Newtonian Fluid 160
 6.6 Non-Newtonian Fluid Models 160
 6.6.1 Power Law Model 161
 6.6.2 Cross Model 162
 6.6.3 Bingham Model 162
6.7 Couette Viscometer 162
 6.7.1 Newtonian Fluid 162
 6.7.2 Power Law Fluid Model 170
 6.7.3 General Non-Newtonian Fluid 175

7 Elastic Material Models 183
7.1 Historical Perspective 183
7.2 Finite Thermoelastic Material Model 184
 7.2.1 Forces and Fields 184
 7.2.2 Balance Laws 185
 7.2.3 Constitutive Model 186
 7.2.4 Constraints Due to Material Frame Indifference 186
 7.2.5 Constraints Due to the Second Law of Thermodynamics 186
7.3 Hyperelastic Material Model 188
 7.3.1 Balance Laws 188
 7.3.2 Constitutive Model 188
 7.3.3 Constraints Due to Material Frame Indifference 189
 7.3.4 Clausius-Duhem Inequality 189
 7.3.5 Material Symmetry 190
 7.3.6 Isotropic Materials 190
 7.3.7 Transversely Isotropic Materials 193
Contents

7.3.8 Incompressible Materials 195
7.3.9 Common Hyperelastic Constitutive Models 196
7.3.10 Freely Jointed Chain 196

7.4 Linear Thermoelastic Material Model 201
7.4.1 Balance Laws 201
7.4.2 Constitutive Model 202
7.4.3 Clausius-Duhem Inequality 202
7.4.4 Linear Thermoelastic Constitutive Relation 204
7.4.5 Material Symmetry 206
7.4.6 Governing Equations for the Isotropic Linear Elastic Material 207

7.5 Uniaxial Tension Test 208
7.5.1 Kinematics 209
7.5.2 Isotropic Linear Thermoelastic Material 210
7.5.3 Incompressible Isotropic Neo-Hookean Model 211

8 Continuum Mixture Theory 214
8.1 Forces and Fields 214
8.2 Balance Laws 216
8.2.1 Conservation of Mass 217
8.2.2 Conservation of Momentum 218
8.2.3 Conservation of Angular Momentum 219
8.2.4 Conservation of Energy 220
8.2.5 Second Law of Thermodynamics 221
8.3 Biphasic Model 222
8.4 Isothermal Biphasic Model 222
8.5 Application to Soft Tissue 224
8.5.1 Confined Compression Experiment 225
8.5.2 Unconfined Compression 235

9 Growth Models 244
9.1 Forces and Fields 244
9.2 Balance Laws 244
9.2.1 Conservation of Mass 245
9.2.2 Reynolds’ Transport Theorem 246
9.2.3 Conservation of Momentum 247
9.2.4 Conservation of Angular Momentum 247
9.2.5 Conservation of Energy 248
9.3 Decomposition of the Deformation Gradient 248
9.4 Summary of the Field Equations 249
9.5 Constitutive Model 250
9.6 Uniaxial Loading 251
9.6.1 Kinematics 251
9.6.2 Governing Equation 253
Contents

9.6.3 Finite Difference Algorithm 254
9.6.4 Example Problem 255
9.6.5 Matlab® File 256

10 Parameter Estimation and Curve Fitting 258
10.1 Propagation of Error 258
10.2 Least Squares Fit 260

11 Finite Element Method 269
11.1 Introduction 269
11.1.1 Element Types 270
11.1.2 Natural Versus Global Coordinates for a Quadrilateral Element 271
11.1.3 Field Variable Representation Within an Element 272
11.1.4 Matrix Representation 273
11.1.5 Integration of a Field Variable 274
11.1.6 Gaussian Quadrature 276
11.1.7 Differentiation of a Field Variable 277
11.2 Formulation of the Governing Equations 278
11.3 Plane Strain Deformation 279
11.3.1 Statement of Virtual Work 280
11.3.2 Discretization of Space 280
11.3.3 Approximation of the Field Variables 280
11.3.4 FEM Formulation 282
11.3.5 Element Stiffness Tensor 282
11.3.6 Body Force Vector 283
11.3.7 Traction Force Vector 283
11.3.8 Single Element Implementation 284
11.4 Axisymmetric Deformation 290
11.4.1 Statement of Virtual Work 291
11.4.2 Discretization of Space 291
11.4.3 Approximation of the Field Variables 291
11.4.4 FEM Formulation 293
11.4.5 Element Stiffness Tensor 293
11.4.6 Body Force Vector 294
11.4.7 Single Element Implementation 297
11.4.8 Multiple Element Implementation 305
11.5 Infinitesimal Plane Strain FEM with Material Nonlinearity 314
11.5.1 Statement of Virtual Work 314
11.5.2 Discretization of Space 314
11.5.3 Approximation of the Field Variables 315
11.5.4 FEM Formulation 316
11.6 Plane Strain Finite Deformation 319
11.6.1 Total Lagrangian Method 320
11.6.2 Updated Lagrangian Method 323
Contents

11.6.3 Updated Lagrangian Method Single Element Implementation 324

12 Appendix

12.1 Introduction to Matlab® 333
12.2 Reference Tables 334

Index 341
Preface

This textbook is designed to give students an understanding and appreciation of continuum-level material modeling. The mathematics and continuum framework are presented as a tool for characterizing and then predicting the response of materials. The textbook attempts to make the connection between experimental observation and model development in order to put continuum-level modeling into a practical context. This comprehensive treatment of continuum mechanics gives students an appreciation for the manner in which the continuum theory is applied in practice and for the limitations and nuances of constitutive modeling.

This book is intended as a text for both an introductory continuum mechanics course and a second course in constitutive modeling of materials. The objective of this text is to demonstrate the application of continuum mechanics to the modeling of material behavior. Specifically, the text focuses on developing, parameterizing, and numerically solving constitutive equations for various types of materials. The text is designed to aid students who lack exposure to tensor algebra, tensor calculus, and/or numerical methods. This text provides step-by-step derivations as well as solutions to example problems, allowing a student to follow the logic without being lost in the mathematics.

The first half of the textbook covers notation, mathematics, the general principles of continuum mechanics, and constitutive modeling. The second half applies these theoretical concepts to different material classes. Specifically, each application covers experimental characterization, constitutive model development, derivation of governing equations, and numerical solution of the governing equations. For each material application, the text begins with the experimental observations, which outline the behavior of the material and must be captured by the material model. Next, we formulate the continuum model for the material and present general constitutive equations. These equations often contain parameters that must be determined experimentally. Therefore, the textbook has a chapter covering the theory and application of experimental error analysis and simple curve fitting. For each material class, the continuum model is then applied to a specific application and the resulting differential equations are solved numerically. Complete descriptions of the finite difference and finite element methods are included. Numerical solutions are implemented in Matlab® and provided in the text along with flow charts illustrating the logic in the Matlab® scripts.