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1 Mathematics

As scientists and engineers, we make sense of the world around us through

observation and experimentation. Using mathematics, we attempt to describe our

observations and make useful predictions based on these observations. For example,

a simple experimental observation that the distance traversed by an object traveling

at a constant velocity is linearly related to both the velocity and the time can be

formalized using the relation, d = v t, where d is the distance vector, v is the velocity

vector, and t is the time. The distance, velocity, and time are physical quantities that

can be measured or controlled. Physical quantities such as distance, velocity, and time

are represented mathematically as tensors. A scalar, for example, is a zeroth-order

tensor. Only a magnitude is required to specify the value of a zeroth-order tensor. In

our previous example, time is such a quantity. If you are told that the duration of an

event was 3 seconds, you need no other information to fully characterize this physical

quantity. Velocity, on the other hand, requires both a magnitude and a direction to

specify its meaning. The velocity would be represented using a first-order tensor, also

known as a vector. The internal stress in a material is a second-order tensor, which

requires a magnitude and two directions to specify its value. You may recognize

that the two required directions are the normal of the surface on which the stress

acts and the direction of the traction vector on this surface. Tensors of higher order

require additional information to specify their physical meaning. In this chapter,

we will review the basic tensor algebra and tensor calculus that will be used in the

formulation of continuum representations.

1.1 Vectors

A first-order tensor, also known as a vector, is used to represent a physical quantity

whose representation requires both direction and magnitude. However, additional

requirements must be satisfied. First, two vectors must add according to the paral-

lelogram rule. Second, if a vector is defined within a given reference frame, and a

second rotated reference frame is defined, it must be possible to express the compo-

nents of a vector in one reference frame in terms of the components within another

reference frame.

Whereas the physical meaning of a vector, such as the velocity of a car, is inde-

pendent of coordinate system, the components of a vector are not. If we define a
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2 Mathematics

set of orthonormal basis vectors, {e1,e2,e3}, we can express a vector as a linear

combination of the basis vectors such that

a = a1e1 + a2e2 + a3e3,

where a1, a2, a3 are scalars representing the components of the vector in the e1, e2,

and e3 directions respectively. The magnitude of a vector, |a|, is a measure of the

length of a vector and is defined as

|a| =
√

(

a2
1 + a2

2 + a2
3

)

.

It is often necessary to compare the relative size of two physical quantities whether

they be scalars, vectors, or a general nth-order tensor. In each case, we may compare

the norm of the two tensors. The norm of a scalar is equal to the absolute value of

the scalar, whereas the norm of a vector, denoted as ‖a‖, is equal to its magnitude.

Both the magnitude and the norm of a vector are zero if and only if each of the

components of the vector is zero.

Whereas magnitude specifies the size of the vector, the direction of the vector

may be represented by a unit vector , â, parallel to the original vector, a, such that

â = a

|a| .

This unit vector captures the directional information contained within the vector but

discards the magnitude. The magnitude of any unit vector is equal to one. If two

vectors, a and b, are parallel, one vector can be written as a scalar, α, times the other

vector,

a = αb.

Vector and tensor equations can become quite complicated. It is often possible

to use index notation to simplify and manipulate the representation of vector or

tensor equations. Let us begin with the assumption that we are modeling physical

quantities in a three-dimensional space that is spanned by the orthonormal basis

vectors, {e1,e2,e3}. In order to write a vector equation in index notation, we introduce

an index, i, which in this case is a variable that can assume the value of 1, 2, or 3. The

representation of a vector as a linear combination of the basis vectors can be written

in the compact form,

a = a1e1 + a2e2 + a3e3 =
3

∑

i=1

aiei.

The summation from 1 to 3 over a repeated index is quite common and may be

represented in a more compact form using the abbreviated summation convention

which is also termed Einstein notation as

a = aiei. (1.1)

The abbreviated summation convention is implied if and only if an index appears

exactly twice within the same term of an equation.

The sum of two vectors, b and c, is equal to a vector such that

a = b + c.
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1.1 Vectors 3

The addition of two vectors is both communitive, b + c = c + b, and consistent with

the parallogram rule. The components of the vectors b and c parallel to the same

basis vector can be added. Vector addition can be written in terms of components

such that

a1e1 + a2e2 + a3e3 = (b1 + c1)e1 + (b2 + c2)e2 + (b3 + c3)e3.

This gives three separate equations for the components of the vector a,

a1 = b1 + c1,

a2 = b2 + c2,

a3 = b3 + c3.

In index notation, this set of three equations is represented as

ai = bi + ci,

where i can take on a value of 1, 2, or 3. The subscript i, termed a free index, appears

exactly once in each of the terms in the equation. In contrast, the subscript i, appears

twice in the right term in Equation (1.1). In that equation, the subscript is termed a

dummy index which signifies a summation from 1 to 3 over the repeated indices.

The scalar valued dot product, also known as a scalar product or inner product,

of two vectors is defined as

a · b = |a||b|cosθab = a1b1 + a2b2 + a3b3 = aibi,

where θab is the angle between the two vectors. There are no free indices in this

equation, but there is a single dummy index, i. When written in index notation, a

scalar-valued function will have no free indices, and a vector valued function will

have a single free index. In the general case, an nth-order tensor-valued function will

have n free indices. From the definition of the dot product, we can see that the dot

product of two perpendicular vectors (θab = 90◦) is equal to zero. In addition, the dot

product of a vector with itself gives the magnitude of the vector squared, |a|2 = a ·a.

The dot product of a unit vector with itself will then be equal to one, e1 · e1 = 1. An

orthonormal basis set has the property that each basis vector is perpendicular to the

others. Therefore, the dot product of each basis vector with all other basis vectors is

zero and the dot product of each basis vector with itself is equal to one giving

ei · ej = δij ,

where we have introduced the Kronecker delta,δij , which has the property

δij =
{

0 if i �= j

1 if i = j
. (1.2)

The components of a vector, a, along the direction of a unit vector e1, is given by

a · e1 = |a|cosθae1 = a1,

where θae1 is the angle between vector a and the basis vector e1.
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4 Mathematics

Figure 1.1. Illustration of a parallelogram bounded by vectors a and b.

The result of the vector product or cross product, c, of two vectors, a and b, is

a vector that is perpendicular to each of the original vectors. The cross product is

written as

c = a × b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3.

The magnitude of the cross product is equal to

|c| = |a||b|sinθab,

where θab is the angle between the two vectors.

The magnitude of the cross product is a measure of the area within a parallelo-

gram defined by the two vectors a and b, Figure 1.1. The unit normal perpendicular

to the parallelogram is defined by the direction of the cross product, n = a×b
|a×b| . Two

parallel vectors will have a cross product equal to zero.

In this textbook, we will always employ a right-handed orthonormal basis set,

which has the properties that each basis vector is perpendicular to the other two,

the magnitude of each basis vector is equal to one, and the basis vectors are related

according to e1 ×e2 = e3. If these conditions are satisfied, the cross product between

any two unit vectors can be written as

ei × ej = εijkek,

where εijk is the Levi-Civita symbol, also known as the permutation symbol or the

alternating symbol. The Levi-Civita symbol has the values

εijk =

⎧

⎪

⎨

⎪

⎩

1 if ijk = 123, 231, or 312

−1 if ijk = 132, 213, or 321

0 for repeatedindices

.

A commonly used identity relating the permutation symbol and the Kronecker

delta is

εijkεipq = δjpδkq − δjqδkp. (1.3)

EXAMPLE 1.1. Determine whether each term in the following equation is a scalar,

vector, or tensor and identify the free and dummy indices.

Bij = amamIij +βCij .
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1.1 Vectors 5

Solution:

The indices i and j both appear exactly once within each term of this equation.

They are each free indices. The index m appears exactly twice within the second

term. This is a dummy index and signifies a summation over the index m. The

summation may be expanded to obtain

Bij = (a1a1 + a2a2 + a3a3)Iij +βCij .

The variable, am, has a single index which signifies that am is the scalar component

of the vector a. The variable, Bij , has two indices, which means Bij is a scalar

component of the second-order tensor, B. The variable β has no index and is

therefore a scalar.

EXAMPLE 1.2. Find the value of δii.

Solution:

Expanding this equation using the summation convention, we find that

δii =
3

∑

i=1

δii

= δ11 + δ22 + δ33

= 3.

EXAMPLE 1.3. Show that δijai = aj .

Solution:

In this equation, there is both a dummy index, i and a free index, j. Therefore,

this is a compact representation of the following three equations:

δi1ai = δ11a1 + δ21a2 + δ31a3

= 1 × a1 + 0 × a2 + 0 × a3

= a1,

δi2ai = δ12a1 + δ22a2 + δ32a3

= 0 × a1 + 1 × a2 + 0 × a3

= a2,

δi3ai = δ13a1 + δ23a2 + δ33a3

= 0 × a1 + 0 × a2 + 1 × a3

= a3.

This result can be compactly written as

δijai = aj .
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6 Mathematics

EXAMPLE 1.4. Express the square of the magnitude of a vector in terms of its

components.

Solution:

We begin with the definition of the magnitude of a vector |a| =
√

a · a. Squaring

this gives

|a|2 = a · a.

The vector, a, may be written in terms of its components as a = aiei . Note that

we cannot use the same index for the vector on the left and right of the dot

product. Each is independently equal to the sum of the projections along each

basis vector such that

|a|2 = aiei · ajej .

The components, ai and aj , are scalar terms and commute freely. The dot product

of the basis vectors ei and ej gives the Kronecker delta such that

|a|2 = aiajδij

= aiai

= a2
1 + a2

2 + a2
3.

EXAMPLE 1.5. Obtain an equation for the cross product of the two vectors a and

b in terms of the components of the vectors.

Solution:

The cross product, c, of vectors a and b can be written as

c = a × b.

Expanding the vectors in terms of their components gives

c = aiei × bjej .

The components ai and bj are scalars and can be shifted in the equation to give

c = aibj

(

ei × ej

)

.

The cross product of the two basis vectors can be written in terms of the

permutation symbol as

εijkek = ei × ej ,

which gives the result

c = aibjεijkek

= (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3.

EXAMPLE 1.6. Show that a × (b × c) = (a · c)b − (a · b)c.

Solution:

Drawing from the previous example, we can write

d = b × c = εjmnbmcnej .
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1.1 Vectors 7

The components of the vector d are given by

dj = εjmnbmcn.

We can also write

a ×
(

d
)

= εijkaidjek.

Substituting the components of d into this equation gives the result

a × (b × c) = εijkai

(

εmnjbmcn

)

ek.

The scalar terms can be rearranged to give

a × (b × c) = εkijεmnjaibmcnek.

Using the identity in Equation (1.3), we obtain

a × (b × c) = (δkmδin − δknδim)aibmcnek

= anbkcnek − ambmckek

= (ancn)bkek − (ambm)ckek

= (a · c)b − (a · b)c.

The final step makes use of the fact that ancn and ambm represent the dot product

of two vectors, whereas bkek and ckek are component expansions of the vectors

b and c.

EXAMPLE 1.7. Find the volume enclosed by the rhombus defined by vectors a,b,

and c.

Solution:

The volume of a rhombus is simply the base area multiplied by the height

perpendicular to the base:

Volume = height × basearea.

The area of the base can be found by taking the magnitude of the cross product

of the bounding vectors, basearea = |a×b|. The height perpendicular to the base

Figure 1.2. Illustration of a rhombus bounded by vectors a, b, and c.
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8 Mathematics

is found by projecting the vector, c, onto the vector perpendicular to the base, n.

Substitution gives

V = (c · n)(|a × b|).
Since |a × b| is a scalar, we can slide it into the dot product

V = (c · |a × b|n).

Finally, we note that the normal to the base, n, is equal to the magnitude of the

cross product of the vectors a and b such that n = a×b
|a×b| . Therefore, we can write

V = c · (a × b).

1.2 Second-Order Tensors

A second-order tensor is used to represent a physical quantity whose representation

requires a magnitude and two directions. For example, each component of the stress

tensor is the resolution of a traction vector onto a surface. One needs the magnitude

of the traction vector, as well as the direction of both the traction vector and the

normal of the surface in order to define each component of the stress tensor. A more

general and mathematically rigorous definition would be that a tensor, A, is a linear

operator that transforms a vector, b, into another vector, a,

a = A · b.

In the remainder of the textbook, we will use bolded capital roman letters to signify

tensors while using lowercase bold letters to signify vectors. The only exception will

be X , which will be reserved for a vector. The tensor product or dyadic product of

two vectors, a and b, operating on any vector c, produces a vector along the direction

of a such that

(a ⊗ b) · c = (b · c)a. (1.4)

The components of the dyadic product of two vectors are given by

(

a ⊗ b
)

ij
= aibj .

Any second-order tensor may be expressed as a linear combination of the dyadic

product of the basis vectors as

A = Aijei ⊗ ej , (1.5)

where Aij are the scalar components of the tensor, A, within the basis set {e1,e2,e3}.
These components may be expressed as a 3 × 3 matrix

[A] =

⎡

⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦ .

The component indices, Aij , represent the matrix row, i, and the matrix column, j.

Whereas we have expressed the components of a tensor as a matrix, not all 3 × 3

matrices are tensors. The physical quantity, such as stress or velocity, measured by

either a vector or a tensor remains invariant when the coordinate system is changed.
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1.2 Second-Order Tensors 9

The vector representing velocity does not change, only the components expressed

within the coordinate system change. The same must be true for any higher order

tensor. In fact, the transformation relating components of any tensor within two

reference frames is quite exact and will be explored in more detail in a later section.

The majority of the equations within this textbook will require the manipulation

of tensor and vector equations. A number of useful tensor and vector identities can

be found in Table 12.3. In this section, we will introduce the commonly used tensor

notation. The transpose, AT , of a tensor, A, is denoted by the superscript T and is

defined in terms of the components of the original tensor A by

AT = Ajiei⊗ej =

⎡

⎣

A11 A21 A31

A12 A22 A32

A13 A23 A33

⎤

⎦ .

If a tensor is defined as a dyadic product of two vectors, A = a⊗b, then the transpose

is given by AT = b⊗a. Generally, a tensor is not equal to its transpose and the dyadic

product does not commute

a ⊗ b �= b ⊗ a.

There are special names reserved for tensors, which possess additional symmetry

properties. A symmetric tensor is a tensor that is equal to its transpose giving A = AT .

A skew-symmetric tensor is a tensor that is equal to the negative of its transpose giving

A = −AT . Notice that the condition for a skew-symmetric tensor requires that each

diagonal term of the tensor is equal to its negative. This requires that each diagonal

term must be equal to zero for the skew-symmetric tensor. In later sections, we will

introduce a number of physical quantities that may be represented by symmetric

tensors such as the Cauchy stress and infinitesimal strain.

It is sometimes convenient to take a general tensor, B, which has no symmetry

properties, and break it up into a symmetric, Bs, and a skew-symmetric tensor,

Ba. The superscript a stands for antisymmetric. This can be done through a simple

decomposition of the tensor, B,

B = 1

2
(B + BT )+ 1

2
(B − BT ).

The first bracketed term gives the symmetric part, Bs = 1
2 (B + BT ) of the tensor,

whereas the second bracketed term gives the skew-symmetric part, Ba = 1
2 (B −BT ).

The trace of a tensor is the sum of the diagonal components of the tensor

tr (A) = A11 + A22 + A33 = Aii.

We also introduce a new operator, :, which represents the contraction of two

tensors

A : B = tr(AT · B) = AijBij .

The contraction of two tensors gives a scalar. The contraction of any symmetric

tensor with any skew-symmetric tensor is always equal to zero. In the case of the

decomposition described earlier, we have Bs : Ba = 0. We will use the contraction

operator to define the tensor norm, ||A||, as

||A|| =
√

(A : A).
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This norm has the property that it is a positive scalar and has a value of zero if and

only if each of the components of the tensor A is zero.

The determinant of a tensor is given by

det (A) = ǫijkAi1Aj2Ak3.

The determinate of a tensor is equal to the determinate of its transpose

det (A) = det(AT )

A tensor is singular if and only if the determinant of that tensor is zero. Any

nonsingular tensor will possess a unique inverse, A−1, which satisfies

A · A−1 = I.

As mentioned earlier, a tensor is a linear operator that gives a vector when acting

on a vector. Assuming we have a nonsingular tensor, it uniquely transforms vectors

from one vector space to another vector space. An orthogonal tensor , Q, acting on

a vector will change the direction but not the magnitude of the vector

|x| = |Q · x| .

This is a tensor that rotates vectors from one vector space into another. Orthogonal

tensors have the property that the transpose is equal to the inverse

QT · Q = I. (1.6)

This has the interesting implication that the determinant of the orthogonal tensor

must be equal to plus or minus one. This is obtained by taking the determinant of

Equation (1.6). This gives

det(QT · Q) = det (I)

det(QT )det (Q) = 1

(det(Q))2 = 1.

If the determinant of the tensor is equal to one, the tensor is a proper orthogonal

tensor . A proper orthogonal tensor preserves the right-handedness (or left-

handedness) of a coordinate system. An improper orthogonal tensor acting on a

system will invert the spatial relationship between vectors.

EXAMPLE 1.8. Given the tensor, A, where

A =

⎡

⎣

4 3 9

−5 2 3

7 6 −4

⎤

⎦ ,

find a) the transpose, AT , b) the trace, trA, c) the tensor norm, ‖A‖, and d) the

symmetric and skew-symmetric tensors As and Aa such that A = As + Aa.

Solution:

a) AT =

⎡

⎣

4 −5 7

3 2 6

9 3 −4

⎤

⎦
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