Index

3D body model, 418–420
3D morphable model, 416–418, 421
3D reconstruction, 297, 305–306, 312–313, 380
from structured light, 314–315
pipeline, 376–377
volumetric graph cuts, 378–380
action recognition, 501–502, 504
activation, 133
active appearance model, 405–410, 421
active contour model, 389–393, 420
active shape model, 388, 396–405, 421
3D, 405
adaboost, 160, 161, 167, see also boosting
affine transformation, 327–328
learning, 332–333
alignment of shapes, 397–398
alpha-beta swap, 261, 265
alpha-expansion algorithm, 244–247, 261
ancestral sampling, 186
application
3D reconstruction, 297, 376–380
action recognition, 501–502, 504
animation synthesis, 449–450
augmented reality tracking, 324, 340, 347–350
background subtraction, 65, 67, 252
body tracking, 421
changing face pose, 103
contour tracking, 453, 478
denoising, 227, 230–231, 239, 247
depth from structured light, 314–315
face detection, 71, 99–100, 106, 161–163, 167
face recognition, 102–103, 424, 430–432, 436, 447–448, 450
face synthesis, 259–260
finding facial features, 219, 223
fitting 3D body model, 418–420
fitting 3D shape model, 416–418
gender classification, 133, 160, 167
gesture tracking, 195, 216
image retargeting, 255–257
interactive segmentation, 253–254, 263
multiview reconstruction, 378–381
object recognition, 100–101, 106, 483–501
panorama, 349, 351
pedestrian detection, 161–163
pedestrian tracking, 476
Photo-tourism, 377–378
scene recognition, 483, 499
segmentation, 101–102, 220–222, 389–393
semantic segmentation, 163, 167
shape from silhouette, 316–319
sign language interpretation, 195, 197, 216
skin detection, 64–65, 67
SLAM, 477–478, 480
stereo vision, 216–219, 222, 254–255, 263
super-resolution, 257
surface layout recovery, 163–164
application (cont.)
 TensorTextures, 448–449
 texture synthesis, 257–259, 263
 tracking head position, 129–130
 Video Google, 500–501
approximate inference, 185
AR Toolkit, 350
argmax function, 508
argmin function, 508
articulated models, 414–416
 pictorial structures, 220
asymmetric bilinear model, 438–443
augmented reality, 324, 340, 347–350
 augmenting paths algorithm, 234–235, 262
author–topic model, 493–495, 503
auto-calibration, 372
back propagation, 159
 background subtraction, 65, 67, 252
 bag of words, 285–286, 484–487, 503
 Baum-Welch algorithm, 212
 Bayes’ Rule, 13
Bayesian approach to fitting, 29–30
Bayesian belief propagation, 208–211, 223
 loopy, 215
 sum-product algorithm, 208–209
Bayesian linear regression, 111–114
Bayesian logistic regression, 138–142
Bayesian model selection, 43, 431
Bayesian network, 175–178
 comparison to undirected, 181
 learning, 189
 sampling, 186–187
Bayesian nonlinear regression, 117
belief propagation, 208–211, 223
 loopy, 215
 sum-product algorithm, 208–209
Bernoulli distribution, 17–18
 conjugate prior, 24, 26
 relation to binomial, 25
beta distribution, 17, 19
between-individual variation, 427
BFGS, 515
bilateral filter, 293
bilinear model, 451
 asymmetric, 438–443
 symmetric, 443–445
binary classification, 60–61, 133–156
binomial distribution, 25
bivariate distribution, 44
block diagonal matrix, 531
blurring, 272
body tracking, 421
boosting, 167
 adaboost, 161
 jointboost, 163
 logitboost, 153
bottom-up approach, 387
branching logistic regression, 153–155
Brownian motion, 463
Broyden Fletcher Goldfarb Shanno, 515
bundle adjustment, 374–376, 381
calibration
 from 3D object, 304–305, 311–312
 from a plane, 337–338, 351
calibration target, 311
 3D, 305
 planar, 337
camera
 geometry, 319
 orthographic, 321
 other camera models, 319
 orthographic, 382
 parameters, 302
 pinhole, 297–304
 in Cartesian coordinates, 302
 in homogeneous coordinates, 308–309
 projective, 297
 weak perspective, 321
camera calibration
 from 3D object, 304–305, 311–312
 from a plane, 337–338, 351
Canny edge detector, 279–280, 390
canonical correlation analysis, 438
capacity, 233
cascade structured classifier, 162
categorical distribution, 17, 19–20
Bayesian fitting, 39–41
conjugate prior, 24, 27
fitting, 38–41
MAP fitting, 39
ML fitting, 38
relation to multinomial, 25
chain model, 195–202, 205–211, 453
directed, 196
learning, 212
MAP inference, 198
marginal posterior inference, 205
sum product algorithm in, 209
undirected, 196–197
changing face pose, 103
Chapman–Kolmogorov equation, 455
class conditional density function, 61, 72
classification, 55, 133–160, 166
adaboost, 160
applications of, 160–166
Bayesian logistic regression, 138–142
binary, 60–61, 133–156
boosting, 153
cascade structure, 162
dual logistic regression, 144–146
fern, 159
gender, 160
kernel logistic regression, 146–147
logistic regression, 60, 133–136
multiclass, 156–158
multilayer perceptron, 159
nonlinear logistic regression, 142
non-probabilistic models, 159–160
one-against-all, 156
random classification tree, 158–159
random forest, 159
relevance vector, 147–149
support vector machine, 160
tree, 153–156, 167
weak classifier, 153
clique, 179, 229
maximal, 179
closed set face identification, 431
clustering, 82, 291–292
course-to-fine approach, 256, 404
collinearity, 329, see homography
color model, 64, 65, 253
combining variables, 215
condensation algorithm, 472–476
for tracking contour, 478
condition number, 524
conditional independence, 173
in a directed model, 176
in an undirected model, 179
conditional probability distribution, 12
of multivariate normal, 48
conditional random field, 260
1D, 212
2D, 247–250
conic, 321, 351, 388
conjugacy, 24
Bernoulli/beta, 26
categorical/Dirichlet distribution, 27
normal/normal inverse Wishart, 27
normal/normal-scaled inverse gamma, 27
self-conjugacy of normal, 49
conjugate gradient method, 515
constellation model, 495–499
constraint edge, 241, 262, 264
continuous random variable, 9
contour model, 389–393
contour tracking, 453, 478
contrastive divergence, 190–191
persistent, 191
corner detection, 279, 281–282, 292
Harris corner detector, 281–282
SIFT, 282
cost function, 509
covariance, 15
covariance matrix, 23, 44
diagonal, 44
full, 44
spherical, 44
CRF, 260
1D, 212
2D, 247–250
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross product</td>
<td>519</td>
</tr>
<tr>
<td>cross-ratio</td>
<td>352</td>
</tr>
<tr>
<td>cut on a graph</td>
<td>233</td>
</tr>
<tr>
<td>cost</td>
<td>233</td>
</tr>
<tr>
<td>minimum</td>
<td>233</td>
</tr>
<tr>
<td>damped Newton</td>
<td>515</td>
</tr>
<tr>
<td>data association</td>
<td>396, 475</td>
</tr>
<tr>
<td>decision boundary</td>
<td>69, 134</td>
</tr>
<tr>
<td>Delaunay triangulation</td>
<td>371</td>
</tr>
<tr>
<td>delta function</td>
<td>508</td>
</tr>
<tr>
<td>denoising</td>
<td>227, 230–231</td>
</tr>
<tr>
<td>binary</td>
<td>239</td>
</tr>
<tr>
<td>multilabel</td>
<td>245, 247</td>
</tr>
<tr>
<td>dense stereo vision</td>
<td>216–219, 254–255, 371</td>
</tr>
<tr>
<td>depth from structured light</td>
<td>314–315</td>
</tr>
<tr>
<td>derivative filter</td>
<td>272</td>
</tr>
<tr>
<td>descriptor</td>
<td>283–287, 293</td>
</tr>
<tr>
<td>bag of words</td>
<td>285–287</td>
</tr>
<tr>
<td>histogram</td>
<td>283–284</td>
</tr>
<tr>
<td>HOG</td>
<td>285</td>
</tr>
<tr>
<td>SIFT</td>
<td>284</td>
</tr>
<tr>
<td>determinant of matrix</td>
<td>521</td>
</tr>
<tr>
<td>diagonal covariance matrix</td>
<td>44</td>
</tr>
<tr>
<td>diagonal matrix</td>
<td>520</td>
</tr>
<tr>
<td>inverting</td>
<td>531</td>
</tr>
<tr>
<td>dictionary of visual words</td>
<td>286, 483</td>
</tr>
<tr>
<td>difference of Gaussians</td>
<td>273</td>
</tr>
<tr>
<td>digits</td>
<td></td>
</tr>
<tr>
<td>modeling</td>
<td>104</td>
</tr>
<tr>
<td>dimensionality reduction</td>
<td>287–293</td>
</tr>
<tr>
<td>dual PCA</td>
<td>290</td>
</tr>
<tr>
<td>K-Means</td>
<td>291–292</td>
</tr>
<tr>
<td>PCA</td>
<td>289–290</td>
</tr>
<tr>
<td>direct linear transformation algorithm</td>
<td>333–335</td>
</tr>
<tr>
<td>direct search method</td>
<td>516</td>
</tr>
<tr>
<td>directed graphical model</td>
<td>175–178</td>
</tr>
<tr>
<td>chain</td>
<td>196</td>
</tr>
<tr>
<td>comparison to undirected</td>
<td>181</td>
</tr>
<tr>
<td>establishing conditional</td>
<td></td>
</tr>
<tr>
<td>independence relations in</td>
<td>176</td>
</tr>
<tr>
<td>for grids</td>
<td>250–251</td>
</tr>
<tr>
<td>learning</td>
<td>189</td>
</tr>
<tr>
<td>Markov blanket</td>
<td>176</td>
</tr>
<tr>
<td>sampling</td>
<td>186–187</td>
</tr>
<tr>
<td>Dirichlet distribution</td>
<td>17, 20–21</td>
</tr>
<tr>
<td>discrete random variable</td>
<td>9</td>
</tr>
<tr>
<td>discriminative model</td>
<td>56</td>
</tr>
<tr>
<td>classification</td>
<td>133–160</td>
</tr>
<tr>
<td>regression</td>
<td>108–131</td>
</tr>
<tr>
<td>disparity</td>
<td>217, 254</td>
</tr>
<tr>
<td>displacement expert</td>
<td>129–130</td>
</tr>
<tr>
<td>distance transform</td>
<td>390</td>
</tr>
<tr>
<td>distribution</td>
<td></td>
</tr>
<tr>
<td>Bernoulli</td>
<td>17–18</td>
</tr>
<tr>
<td>beta</td>
<td>17, 19</td>
</tr>
<tr>
<td>binomial</td>
<td>25</td>
</tr>
<tr>
<td>categorical</td>
<td>17, 19–20</td>
</tr>
<tr>
<td>conjugate</td>
<td>24</td>
</tr>
<tr>
<td>Dirichlet</td>
<td>17, 20–21</td>
</tr>
<tr>
<td>gamma</td>
<td>85</td>
</tr>
<tr>
<td>multinomial</td>
<td>25</td>
</tr>
<tr>
<td>multivariate normal</td>
<td>22–23, 44–50</td>
</tr>
<tr>
<td>normal</td>
<td>17</td>
</tr>
<tr>
<td>normal inverse Wishart</td>
<td>17, 23–24</td>
</tr>
<tr>
<td>normal-scaled inverse gamma</td>
<td>17, 21–22</td>
</tr>
<tr>
<td>t-distribution</td>
<td>82–88</td>
</tr>
<tr>
<td>univariate normal</td>
<td>21</td>
</tr>
<tr>
<td>DLT algorithm</td>
<td>333–335</td>
</tr>
<tr>
<td>dolly zoom</td>
<td>320</td>
</tr>
<tr>
<td>domain of a random variable</td>
<td>17</td>
</tr>
<tr>
<td>dot product</td>
<td>519</td>
</tr>
<tr>
<td>dual</td>
<td></td>
</tr>
<tr>
<td>linear regression</td>
<td>124–126</td>
</tr>
<tr>
<td>logistic regression</td>
<td>144–146</td>
</tr>
<tr>
<td>parameterization</td>
<td>124, 144</td>
</tr>
<tr>
<td>PCA</td>
<td>290</td>
</tr>
<tr>
<td>dynamic programming</td>
<td>198, 222</td>
</tr>
<tr>
<td>for stereo vision</td>
<td>222</td>
</tr>
<tr>
<td>in a chain</td>
<td>199–202</td>
</tr>
<tr>
<td>in a loop</td>
<td>226</td>
</tr>
<tr>
<td>in a tree</td>
<td>202–205</td>
</tr>
<tr>
<td>E-step</td>
<td>95, 76, 97–98</td>
</tr>
<tr>
<td>edge detection</td>
<td>279, 292</td>
</tr>
<tr>
<td>Canny</td>
<td>279–280, 390</td>
</tr>
<tr>
<td>edge filter</td>
<td>272</td>
</tr>
<tr>
<td>eight-point algorithm</td>
<td>363–364</td>
</tr>
<tr>
<td>EKF</td>
<td>466–467</td>
</tr>
<tr>
<td>EM algorithm</td>
<td>75–77, 94–99</td>
</tr>
<tr>
<td>E-step</td>
<td>76, 95, 97–98</td>
</tr>
</tbody>
</table>
for factor analyzer, 90–93
for mixture of Gaussians, 79–82
for t distribution, 86–88
lower bound, 96
M-step, 76, 98–99
empirical max-marginals, 186
energy minimization, 178
epipolar constraint, 356
epipolar geometry, 355
epipolar line, 356
computing, 359
epipole, 356–357
computing, 359
essential matrix, 357–359, 380
decomposition, 360–361
properties, 359
estimating parameters, 28–41
Euclidean transformation, 323–325
learning, 331–332
evidence, 13, 42
framework, 43
expectation, 14–15
expectation maximization, 75–77, 94–99, 105
E-step, 76, 95, 97–98
for factor analyzer, 90–93
for mixture of Gaussians, 79–82
for t-distribution, 86–88
lower bound, 96
M-step, 76, 98–99
expectation step, 76, 95, 97–98
expert, 154
exponential family, 26
extended Kalman filter, 466–467
exterior orientation problem, 309, 319
3D scene, 304, 309–311
planar scene, 335–337
extrinsic parameters, 302
estimation, 319
learning
3D scene, 304, 309–311
planar scene, 335–337
face
clustering, 431, 447
detection, 71, 72, 99–100, 106, 161–163, 167
recognition, 102–103, 424, 436, 447–448, 450
across pose, 103
as model comparison, 430–432
closed set identification, 431
open set identification, 431
synthesis, 259–260
verification, 424
face model
3D morphable, 416–418
facial features
aligning, 450
finding, 219, 223
factor analysis, 88, 105, 424
as a marginalization, 90
learning, 90–93
mixture of factor analyzers, 94
probability density function, 89
factor graph, 193, 208, 223
factorization, 374
of a probability distribution, 175, 178
Tomasi-Kanade, 380, 382
feature, 380
tracking, 380
feature descriptor, 283–287
bag of words, 285–287
histogram, 283–284
HOG, 285
SIFT, 284
feature detector, 279
Canny edge detector, 279–280
Harris corner detector, 281–282
SIFT detector, 282
fern, 159
field of view, 301
filter, 271
bilateral, 293
derivative, 272
different of Gaussian, 273
discriminative, 272
Gabor, 273
Haar, 275
Laplacian, 273
Laplacian of Gaussian, 273
Prewitt, 272
Sobel, 273
fitting probability models, 28–41
fixed interval smoothing, 462–463
fixed lag smoothing, 461–462
flow
 optical, 255
 through graph, 233
focal length, 297
 parameter, 299
forest, 159, 165
forward-backward algorithm, 206–208
Frobenius norm, 530
frustum, 348
full covariance matrix, 44
fundamental matrix, 361–362, 380
 decomposition, 371
 estimation, 362–364
 relation to essential matrix, 362
Gabor energy, 275
Gabor filter, 273
gallery face, 431
gamma distribution, 85
gamma function, 19
gating function, 154
Gauss-Newton method, 514–515
gaussian distribution, see normal distribution
Gaussian Markov random field, 264
Gaussian process
 classification, 147
 latent variable model, 410–414, 437
 multifactor, 449–450
 regression, 119, 131
gender classification, 133, 160, 167
generalized Procrustes analysis, 397–398
generative model, 56, 57
 comparison to discriminative model, 63
godesic distance, 254
geometric invariants, 352
geometric transformation model, 323–347
 2D, 323–330
 application, 347–349
 learning, 330
gesture tracking, 195, 216
Gibbs distribution, 178, 228
Gibbs sampling, 187–188
GPLVM, 410–414, 437
 multifactor, 449–450
GrabCut, 253–254
gradient vector, 136, 511
graph cuts, 231–247, 261
 alpha-expansion, 244–247
 applications of, 251–257
 binary variables, 235–239
 efficient reuse of solution, 262
 multilabel, 239–247
 reparameterization, 237–239
 volumetric, 378–380
graphical model, 173–192
 applications in computer vision, 181
 chain, 195, 453
 directed, 175–178
 learning, 189
 sampling, 186–187
 directed versus undirected, 181
 factor graph, 193
 grid-based, 213
 plate notation, 177
 tree, 195
 undirected, 178
 learning, 189–192
 sampling, 187–188
Gray codes, 315
grid-based model, 213, 227–264
 applications, 261
 directed, 250–251
Haar filter, 162, 275
hand model, 415, 416, 422
Harris corner detector, 281–282
head position
 tracking, 129–130
Heaviside step function, 142, 153, 508
Hessian matrix, 136, 510
hidden layer, 159
hidden Markov model, 182, 196, 197, 216, 223
hidden variable, 73, 74
 representing transformations, 104
 higher order cliques, 250, 263
Hinton diagram, 9
histogram equalization, 270
histogram of oriented gradients, 285, 293
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>histogram, RGB</td>
<td>283</td>
</tr>
<tr>
<td>HMM, 182, 196, 197, 223</td>
<td></td>
</tr>
<tr>
<td>HOG descriptor, 285, 293</td>
<td></td>
</tr>
<tr>
<td>homogeneous coordinates, 306</td>
<td></td>
</tr>
<tr>
<td>homography, 328–329</td>
<td></td>
</tr>
<tr>
<td>learning, 333–335</td>
<td></td>
</tr>
<tr>
<td>properties, 339–341</td>
<td></td>
</tr>
<tr>
<td>human part identification, 164–165</td>
<td></td>
</tr>
<tr>
<td>human performance capture, 318, 319</td>
<td></td>
</tr>
<tr>
<td>human pose estimation, 220</td>
<td></td>
</tr>
<tr>
<td>hyperparameter, 18</td>
<td></td>
</tr>
<tr>
<td>hysteresis thresholding, 280</td>
<td></td>
</tr>
<tr>
<td>ICP, 395</td>
<td></td>
</tr>
<tr>
<td>ideal point, 308</td>
<td></td>
</tr>
<tr>
<td>identity, 424</td>
<td></td>
</tr>
<tr>
<td>identity/style model, 424</td>
<td></td>
</tr>
<tr>
<td>asymmetric bilinear, 438–443</td>
<td></td>
</tr>
<tr>
<td>multifactor GPLVM, 449–450</td>
<td></td>
</tr>
<tr>
<td>multilinear, 446</td>
<td></td>
</tr>
<tr>
<td>nonlinear, 437–438</td>
<td></td>
</tr>
<tr>
<td>PLDA, 433–437</td>
<td></td>
</tr>
<tr>
<td>subspace identity model, 427–432</td>
<td></td>
</tr>
<tr>
<td>symmetric bilinear, 443–445</td>
<td></td>
</tr>
<tr>
<td>identity matrix, 520</td>
<td></td>
</tr>
<tr>
<td>image denoising, 227, 230–231</td>
<td></td>
</tr>
<tr>
<td>binary, 239</td>
<td></td>
</tr>
<tr>
<td>multilabel, 247</td>
<td></td>
</tr>
<tr>
<td>image descriptor, 293</td>
<td></td>
</tr>
<tr>
<td>image plane, 297</td>
<td></td>
</tr>
<tr>
<td>image processing, 269–287, 292</td>
<td></td>
</tr>
<tr>
<td>image quilting, 257–259</td>
<td></td>
</tr>
<tr>
<td>image retargeting, 255–257</td>
<td></td>
</tr>
<tr>
<td>image structure tensor, 281</td>
<td></td>
</tr>
<tr>
<td>importance sampling, 476</td>
<td></td>
</tr>
<tr>
<td>incremental fitting</td>
<td></td>
</tr>
<tr>
<td>of logistic regression, 150–152</td>
<td></td>
</tr>
<tr>
<td>independence, 14</td>
<td></td>
</tr>
<tr>
<td>conditional, 173</td>
<td></td>
</tr>
<tr>
<td>inference, 56</td>
<td></td>
</tr>
<tr>
<td>algorithm, 56</td>
<td></td>
</tr>
<tr>
<td>empirical max marginals, 186</td>
<td></td>
</tr>
<tr>
<td>in graphical models with loops, 214</td>
<td></td>
</tr>
<tr>
<td>MAP solution, 184</td>
<td></td>
</tr>
<tr>
<td>marginal posterior distribution, 184</td>
<td></td>
</tr>
<tr>
<td>maximum marginals, 185</td>
<td></td>
</tr>
<tr>
<td>sampling from posterior, 185</td>
<td></td>
</tr>
<tr>
<td>innovation, 458</td>
<td></td>
</tr>
<tr>
<td>integral image, 275</td>
<td></td>
</tr>
<tr>
<td>intensity normalization, 269</td>
<td></td>
</tr>
<tr>
<td>interactive segmentation, 253–254, 263</td>
<td></td>
</tr>
<tr>
<td>interest point detection, 279, 292</td>
<td></td>
</tr>
<tr>
<td>Harris corner detector, 281–282</td>
<td></td>
</tr>
<tr>
<td>SIFT, 282</td>
<td></td>
</tr>
<tr>
<td>intersection of two lines, 321</td>
<td></td>
</tr>
<tr>
<td>intrinsic matrix, 302</td>
<td></td>
</tr>
<tr>
<td>intrinsic parameters, 302</td>
<td></td>
</tr>
<tr>
<td>learning</td>
<td></td>
</tr>
<tr>
<td>from 3D object, 304–305, 311–312</td>
<td></td>
</tr>
<tr>
<td>from a plane, 337–338</td>
<td></td>
</tr>
<tr>
<td>invariant</td>
<td></td>
</tr>
<tr>
<td>geometric, 352</td>
<td></td>
</tr>
<tr>
<td>inverse of a matrix, 520, 525–527</td>
<td></td>
</tr>
<tr>
<td>computing for large matrices, 530</td>
<td></td>
</tr>
<tr>
<td>Ishikawa construction, 261</td>
<td></td>
</tr>
<tr>
<td>iterated extended Kalman filter, 467</td>
<td></td>
</tr>
<tr>
<td>iterative closest point, 395</td>
<td></td>
</tr>
<tr>
<td>Jensen’s inequality, 96</td>
<td></td>
</tr>
<tr>
<td>joint probability, 10</td>
<td></td>
</tr>
<tr>
<td>jointboost, 163</td>
<td></td>
</tr>
<tr>
<td>junction tree algorithm, 215</td>
<td></td>
</tr>
<tr>
<td>K-means algorithm, 82, 291–292</td>
<td></td>
</tr>
<tr>
<td>Kalman filter, 182, 455–463</td>
<td></td>
</tr>
<tr>
<td>temporal and measurement</td>
<td></td>
</tr>
<tr>
<td>models, 463</td>
<td></td>
</tr>
<tr>
<td>derivation, 456</td>
<td></td>
</tr>
<tr>
<td>extended, 466–467</td>
<td></td>
</tr>
<tr>
<td>iterated extended, 467</td>
<td></td>
</tr>
<tr>
<td>recursions, 459</td>
<td></td>
</tr>
<tr>
<td>smoothing, 461–463</td>
<td></td>
</tr>
<tr>
<td>unscented, 467–471</td>
<td></td>
</tr>
<tr>
<td>Kalman gain, 457</td>
<td></td>
</tr>
<tr>
<td>Kalman smoothing, 461–463</td>
<td></td>
</tr>
<tr>
<td>kernel function, 118–120, 146</td>
<td></td>
</tr>
<tr>
<td>kernel logistic regression, 146–147</td>
<td></td>
</tr>
<tr>
<td>kernel PCA, 290, 293</td>
<td></td>
</tr>
<tr>
<td>kernel trick, 119</td>
<td></td>
</tr>
<tr>
<td>Kinect, 164</td>
<td></td>
</tr>
<tr>
<td>kinematic chain, 415</td>
<td></td>
</tr>
<tr>
<td>Kullback-Leibler divergence, 97</td>
<td></td>
</tr>
</tbody>
</table>
landmark point, 389
landscape matrix, 520
Laplace approximation, 139, 140, 148
Laplacian filter, 273
Laplacian of Gaussian filter, 273
latent Dirichlet allocation, 487–492, 503
learning, 490–492
latent variable, 73, 74
LDA (latent Dirichlet allocation), 487–492, 503
learning, 490–492
LDA (linear discriminant analysis), 450
learning, 28, 56
Bayesian approach, 29–30
in chains and trees, 212
in directed models, 189
in undirected models, 189–192
least squares, 32
maximum a posteriori, 28
maximum likelihood, 28
learning algorithm, 56
least median of squares regression, 350
least squares, 32
solving least squares problems, 528
likelihood, 13
line, 321, 351
epipolar, 356
joining two points, 321
line search, 515
linear algebra, 519–532
common problems, 528–530
linear discriminant analysis, 450
linear regression, 108–110
Bayesian approach, 111–114
limitations of, 110
linear subspace, 89
linear transformation, 522
local binary pattern, 276, 293
local maximum/minimum, 137, 509
log likelihood, 31
logistic classification tree, 153–156
logistic regression, 60, 133–136
Bayesian approach, 138–142
branching, 153–155
dual, 144–146
kernel, 146–147
multiclass, 156–158
nonlinear, 142
logistic sigmoid function, 133
logitBoost, 153
loopy belief propagation, 215
applications, 223
M-estimator, 350
M-step, 76, 95, 98–99
magnitude of vector, 519
manifold, 287
MAP estimation, 28
marginal distribution, 10
of multivariate normal, 47
marginal posterior distribution, 184
marginalization, 10
Markov assumption, 196, 453
Markov blanket, 176, 179
in a directed model, 176
in an undirected model, 179
Markov chain Monte Carlo, 187
Markov network
learning, 189–192
sampling, 187–188
Markov random field, 179, 182, 227, 228, 260
Gaussian, 264
applications, 251–257, 261
higher order, 250, 263
pairwise, 229
Markov tree, 182
matrix, 520
block diagonal, 531
calculus, 527–528
condition number, 524
determinant, 521
diagonal, 520
Frobenius norm, 530
identity, 520
inverse, 520, 525–527
inverting large, 530
landscape, 520
multiplication, 520
null space, 522, 525
orthogonal, 521
portrait, 520
positive definite, 521
rank, 524
Index

rotation, 521
singular, 520
square, 520
trace, 521
transpose, 520
matrix determinant lemma, 532
matrix inversion lemma, 113, 532
max flow, 233
algorithms, 262
augmenting paths algorithm, 234–235
max function, 508
maximal clique, 179
maximization step, 76, 95, 98–99
maximum a posteriori estimation, 28
maximum likelihood estimation, 28
maximum marginals, 185
MCMC, 187
measurement incorporation step, 455
measurement model, 453
Mercer’s theorem, 119
min cut, 233
min function, 508
minimum direction problem, 310, 529
mixture model
mixture of experts, 168
mixture of factor analyzers, 94, 105
mixture of Gaussians, 77–82, 105
mixture of PLDAs, 437
mixture of t-distributions, 94, 105
robust, 94
ML estimation, 28
model, 56
discriminative, 56
generative, 56, 57
model comparison, 42
model selection, 431
moment, 14–15
about mean, 15
about zero, 15
MonoSLAM, 477–478
morphable model, 416–418
mosaic, 349, 351
MRF, 179, 182, 227, 228, 260
applications, 251–257, 261
Gaussian, 264
higher order, 250, 263
pairwise, 229
multiclass classification, 156–158
multiclass logistic regression, 156–158
random classification tree, 158–159
multifactor GPLVM, 449–450
multifactor model, 446
multilayer perceptron, 159, 167
multilinear model, 446, 451
multiview geometry, 380
multiview reconstruction, 305–306, 313, 372, 378–381
multinomial distribution, 25
multiple view geometry, 354
multivariate normal distribution, 17, 44–50
multiview reconstruction, 312
naïve Bayes, 65
neural network, 159
Newton method, 137, 512–514
non-convex potentials, 244
nonlinear identity model, 437–438
nonlinear logistic regression, 142
nonlinear optimization, 509–518
BFGS, 515
conjugate gradient method, 515
Gauss-Newton method, 514–515
line search, 515
Newton method, 512–514
over positive definite matrices, 518
over rotation matrices, 517
quasi-Newton methods, 515
reparameterization, 516
steepest descent, 511–512
trust-region methods, 515
nonlinear regression, 114
Bayesian, 117
nonstationary model, 461
norm of vector, 519
normal distribution, 17, 44–50
Bayesian fitting, 35
change of variable, 50
conditional distribution, 48
covariance decomposition, 45
MAP fitting, 33
normal distribution (cont.)
marginal distribution, 47
ML fitting, 30
multivariate, 17, 22–23
product of normals, 48, 52
self-conjugacy, 49
transformation of variable, 47
univariate, 17, 21
normal inverse Wishart distribution, 17, 23–24
normal-scaled inverse gamma distribution, 17, 21–22
normalized camera, 299
normalized image coordinates, 310
null space, 522, 525
object recognition, 100–101, 106, 483–501
unsupervised, 492
objective function, 509
offset parameter, 300
one-against-all classifier, 156
open-set face identification, 431
optical axis, 297
optical center, 297
optical flow, 255
optimization, 509–518
BFGS, 515
conjugate gradient method, 515
Gauss-Newton method, 514–515
line search, 515
Newton method, 512–514
over positive definite matrix, 518
over rotation matrix, 517
quasi-Newton methods, 515
reparameterization, 516
steepest descent, 511–512
trust-region methods, 515
orthogonal matrix, 521
orthogonal Procrustes problem, 311, 332, 529
orthogonal vectors, 519
orthographic camera, 321, 382
outlier, 82, 342
pairwise MRF, 229
pairwise term, 198, 232
panorama, 349, 351
parametric contour model, 389–393
part of object, 488
particle filtering, 472–476
partition function, 178
PCA, 289–290
dual, 290
kernel, 290, 293
probabilistic, 89, 401–402
PDF, 9
PEaRL algorithm, 345, 350
pedestrian detection, 161–163
pedestrian tracking, 476
per-pixel image processing, 269
persistent contrastive divergence, 191
perspective projection, 298
perspective-n-point problem, 304, 319
Phong shading model, 416
Photo-tourism, 377–378
photoreceptor spacing, 300
pictorial structure, 219, 222
pinhole, 297
pinhole camera, 297–304, 354
in Cartesian coordinates, 302
in homogeneous coordinates, 308–309
plate, 177
PLDA, 433–437
PnP problem, 304, 319
point distribution model, 396–405
point estimate, 29
point operator, 269
polar rectification, 371
portrait matrix, 520
pose estimation, 350
positive definite matrix, 521
optimization over, 518
posterior distribution, 13
potential function, 178
potentials
convex, 243
non-convex, 244
Potts model, 244, 265
PPCA, 401–402
learning parameters, 401
prediction step, 455
predictive distribution, 28
preprocessing, 100, 269–292
Prewitt operators, 272
principal component analysis, 289–290
 dual PCA, 290
 probabilistic, 89, 401–402
principal direction problem, 529
principal point, 297
prior, 13
probabilistic latent semantic analysis, 503
probabilistic linear discriminant analysis, 433–437
probabilistic principal component analysis, 89, 105, 401–402
 learning parameters, 401
probability
 conditional, 12
 joint, 10
 marginal, 10
probability density function, 9
probability distribution, 17–25
 fitting, 28–41
 probe face, 431
Procrustes analysis
 generalized, 397–398
Procrustes problem, 311, 529
product of experts, 179
projective camera, 297
projective pinhole camera, 297
projective reconstruction, 313
projective transformation, 328–329
 fitting, 333–335
 properties, 339–341
propose, expand and relearn, 345, 350
prototype vector, 291
pruning graphical models, 214, 219
quadri-focal tensor, 373
quadric, 415
 truncated, 415
Quasi-Newton methods, 515
quaternion, 517
radial basis function, 115, 151
radial distortion, 303
random classification tree, 158–159
random forest, 159
random sample consensus, 342–344, 350
 sequential, 345
random variable, 9
 continuous, 9
 discrete, 9
 domain of, 17
rank of matrix, 524
RANSAC, 342–344, 350
 sequential, 345
Rao-Blackwellization, 476
reconstruction, 297, 305–306, 312–313
 from structured light, 314–315
 multiview, 372, 381
 projective, 313
 two view, 364
reconstruction error, 288
reconstruction pipeline, 376–377, 380
rectification, 216, 368, 380
 planar, 368
 polar, 371
region descriptor, 283–286
 bag of words, 285–287
 histogram, 283–284
 HOG, 285
 SIFT, 284
regression, 55, 108–131
 Bayesian linear, 111–114
 dual, 124–126
 Gaussian process, 119, 131
 linear, 58, 108–110
 limitations of, 110
 nonlinear, 114
 nonlinear, Bayesian, 117
 polynomial, 115
 relevance vector, 127–128
 sparse, 120
 to multivariate data, 128
relative orientation, 360, 380
relevance vector
 classification, 147–149
 regression, 127–128
reparameterization
 for optimization, 516
 in graph cuts, 237–239
 multilabel case, 243
reprojection error, 355
resection-intersection, 374
responsibility, 79
robust density modeling, 82–88
robust learning, 342, 350
PEaRL, 345
RANSAC, 342–344
sequential RANSAC, 345
robust mixture model, 94
robust subspace model, 94
rotation matrix, 521
optimization over, 517
rotation of camera, 340
sampling
ancestral, 186
directed models, 186–187
Gibbs, 187
undirected models, 187–188
sampling from posterior, 185
scalar product, 519
scale invariant feature transform, 282, 284
SCAPE, 418–420
scene model, 499
scene recognition, 483
Schur complement, 531
segmentation, 101–102, 106, 220, 387, 389–393
supervised, 253–254
semantic segmentation, 163, 167
sequential RANSAC, 345
seven point algorithm, 368
shape, 387
alignment, 397–398
definition, 388
statistical model, 396–405
shape and appearance models, 405–410
shape context descriptor, 129, 286–287
shape from silhouette, 316–319
shape model
3D, 405
articulated, 414–416
non-Gaussian, 410–414
subspace, 399
shape template, 393, 395
Sherman–Morrison–Woodbury relation, 113, 532
shift map image editing, 255–257
SIFT, 348
descriptor, 284, 293
detector, 282
sign language interpretation, 195, 197, 216
silhouette
shape from, 316–319
similarity transformation, 326
learning, 332
simultaneous localization and mapping, 477–478, 480
single author–topic model, 493, 495
singular matrix, 520
singular value decomposition, 522–525
singular values, 523
skew (camera parameter), 301
skew (moment), 15
skin detection, 64–65, 67
SLAM, 477–478, 480
smoothing, 461–463
fixed interval, 462–463
fixed lag, 461–462
snake, 220–223, 389–393, 420
Sobel operator, 273
softmax function, 157
sparse classification model, 147–150
sparse linear regression, 120
sparse stereo vision, 297
sparsity, 120, 127, 148, 150
spherical covariance matrix, 44
square matrix, 520
squared reprojection error, 355
statistical shape model, 396–405
steepest descent, 511–512
step function, 153
stereo reconstruction, 305–306, 312–313
stereo vision, 216–219, 222, 254–255, 263
dense, 216–219
dynamic programming, 222
graph cuts formulation, 254–255
sparse, 297
strong classifier, 153
structure from motion, 354, 372
structured light, 314, 319
Student t-distribution, 82–88
style, 424
style / identity model, 424
asymmetric bilinear, 438–443
multifactor GPLVM, 449–450
multilinear, 446
nonlinear, 437–438
PLDA, 433–437
subspace identity model, 427–432
symmetric bilinear, 443–445
style translation, 442
submodularity, 239, 243
multilabel case, 243
subspace, 89
subspace identity model, 427–432
subspace model, 88, 105, 399, 421, 424
bilinear asymmetric, 438–443
bilinear symmetric, 443–445
dual PCA, 290
factor analysis, 424
for face recognition, 450
multifactor GPLVM, 449–450
multilinear model, 446
PLDA, 433–437
principal component analysis,
289–290
subspace identity model, 427–432
subspace shape model, 399
sum-product algorithm, 208–209, 223
for chain model, 209
for tree model, 211
super-resolution, 257
superpixel, 163
supervised segmentation, 253–254
support vector machine, 160, 167
surface layout recovery, 163–164
SVD, 522–525
SVM, 160
symmetric bilinear model, 443–445
symmetric epipolar distance, 363
t-distribution, 82–88, 105
mixture of, 94
multivariate, 85
univariate, 84
t-test, 43
temporal model, 453–480
tensor, 522
multiplication, 522
TensorTextures, 448–449
texton, 163, 277
textonboost, 163
texture synthesis, 257–259, 263
tied factor analysis, 438
Tomasi-Kanade factorization, 374, 380, 382
top-down approach, 387
topic, 488
trace of matrix, 521
tracking, 453–480
pedestrian, 476
applications, 479
condensation algorithm, 472–476
displacement expert, 129–130
features, 380
for augmented reality, 347–349
head position, 129–130
particle filtering, 472–476
through clutter, 478
transformation, 323–347, 350
2D, 323–330
affine, 327–328
application, 347–349
between images, 339
Euclidean, 323–325
homography, 328–329
indexed by hidden variable,
104
inference, 334
inverting, 334
learning, 330
affine, 332–333
Euclidean, 331–332
homography, 333–335
projective, 333–335
similarity, 332
linear, 522
projective, 328–329
robust learning, 342
similarity, 326
transpose, 520
tree model, 195
learning, 212
MAP inference, 202–205
marginal posterior inference, 211
tri-focal tensor, 373
triangulation, 306
truncating potentials, 247
trust-region methods, 515
two-view geometry, 355
UKF, 467–471
unary term, 232, 251
undirected graphical model, 178
chain, 196–197
conditional independence
relations in, 179
learning, 189–192
Markov blanket, 179
sampling, 187–188
univariate normal distribution, 17
unscented Kalman filter, 467–471
unsupervised object discovery, 492
variable elimination, 205
variance, 15
vector, 519
norm, 519
product, 519
Vertigo, 320
Video Google, 500–501
virtual image, 297
visual hull, 316
visual word, 285, 483
Viterbi algorithm, 198–202
volumetric graph cuts, 378–380
weak classifier, 153
weak perspective camera, 321
whitening, 269
whitening transformation, 51
within-individual variation, 427, 433
Woodbury inversion identity, 113, 532
word, 285, 483
world state, 55