Textbook of Neural Repair and Rehabilitation

Volume I – Neural Repair and Plasticity

Second Edition
Textbook of Neural Repair and Rehabilitation

Volume I – Neural Repair and Plasticity

Second Edition

Edited by

Michael E. Selzer
Director, Shriners Hospitals Pediatric Research Center and Professor of Neurology, Temple University School of Medicine, Philadelphia, PA, USA

Stephanie Clarke
Professor and Head of Neuropsychology and Neurorehabilitation, Service de Neuropsychologie et de Neuroréhabilitation, CHUV, Lausanne, Switzerland

Leonardo G. Cohen
Chief of the Human Cortical Physiology Section and the Stroke Rehabilitation Clinic, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA

Gert Kwakkel
Professor in Neuromodulation, Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, the Netherlands

Robert H. Miller
Professor, Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
Contents (Volume I – Neural Repair and Plasticity)

Contributor affiliations ix
Preface xvii
Introduction to Neural Repair and Rehabilitation xviii

Section 1 – Neural plasticity: cellular and molecular mechanisms of neural plasticity

1. Degenerative changes and reactive growth responses of neurons following denervation and axotomy: historical concepts and their modern embodiments
 Oswald Steward
2. Learning and memory: basic principles and model systems
 Kimberly M. Christian, Andrew M. Poulos, and Richard F. Thompson
3. Short-term plasticity: facilitation, augmentation, potentiation, and depression
 Gavriel David and Ellen Barrett
4. Long-term potentiation and long-term depression
 Gareth Thomas and Richard L. Huganir
5. Cellular and molecular mechanisms of associative and nonassociative learning
 John H. Byrne, Diasinou Fioravante, and Evangelos G. Antzoulatos

Section 2 – Functional plasticity in the central nervous system

6. Plasticity of mature and developing somatosensory systems
 Jon H. Kaas and Hui-Xin Qi
7. Activity-dependent plasticity in the intact spinal cord
 Jonathan R. Wolpaw and Aiko K. Thompson
8. Plasticity of cerebral motor functions: implications for repair and rehabilitation
 Randolph J. Nudo
9. Plasticity in visual connections: retinal ganglion cell axonal development and regeneration
 Martin Munz, Edward S. Ruthazer, and Kurt Haas

Section 3 – Plasticity after injury to the central nervous system

10. Plasticity in auditory functions
 Josef P. Rauschecker
11. Cross-modal plasticity in the visual system
 Krishnankutty Sathian
12. The role of extracellular matrix in plasticity in the spinal cord
 Melissa R. Andrews, Difei Wang, Chin Lik Tan, and James W. Fawcett
13. Spinal plasticity underlying the recovery of locomotion after injury
 Serge Rossignol, Brian J. Schmidt, and Larry M. Jordan
14. Cellular mechanisms of plasticity after brain lesions
 S. Thomas Carmichael
15. Pathophysiology and plasticity in cerebral palsy
 Wenbin Deng and Frances E. Jensen
16. Noninvasive brain stimulation in cognitive rehabilitation: guiding plasticity after injury to the central nervous system
 Anna-Katharine Brem, Jared C. Horvath, and Alvaro Pascual-Leone
17. From bench to bedside: influence of theories of plasticity on human neurorehabilitation
 Agnes Floel and Leonardo G. Cohen

Section 4 – Neural repair: basic cellular and molecular processes

18. Neuronal death and rescue: neurotrophic factors and anti-apoptotic mechanisms
 Thomas W. Gould and Carol Milligan
19. Axon degeneration and rescue
 Erika Timar and Ahmet Höke
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Adult neurogenesis and neural precursors, progenitors, and stem cells in the adult central nervous system</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Jeffrey D. Macklis and Gerd Kempermann</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Axon guidance during development and regeneration</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Simon W. Moore and Timothy E. Kennedy</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Synaptogenesis</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Matthew S. Kayser and Matthew B. Dalva</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Non-mammalian models of nerve regeneration</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>Jennifer Morgan and Michael Shifman</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Myelin-associated axon growth inhibitors</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Binhai Zheng and Karim Fouad</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Inhibitors of axonal regeneration</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Marco Domeniconi, Tim Spencer, and Marie T. Filbin</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Glial development and axon regeneration</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>Robert H. Miller</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Effects of the glial scar and extracellular matrix molecules on axon regeneration</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>Himanshu Sharma, Bradley Lang, and Jerry Silver</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>The role of the inflammatory response in central nervous system injury and regeneration</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>Charbel E-H. Moussa</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Neurotrophin repair of spinal cord damage</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Vanessa S. Boyce, Joel M. Levine, and Lorraine M. Mendell</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Intraneuronal determinants of axon regeneration</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Toby A. Ferguson, Michael E. Selzer, and Zhigang He</td>
<td></td>
</tr>
</tbody>
</table>

Section 5 — Determinants of regeneration in the injured nervous system

31	Cellular replacement in spinal cord injury	435
	Joseph F. Bonner, Angelo C. Lepore, Mahendra S. Rao, and Itzhak Fischer	
32	Dysfunction and recovery in demyelinated and dysmyelinated axons	457
	Stephen G. Waxman	
33	Role of Schwann cells in peripheral nerve regeneration	472
	Young-Jin Son and Wesley J. Thompson	
34	Transplantation of Schwann cells and olfactory ensheathing cells as a therapeutic strategy in spinal cord injury	496
	Jeffery D. Kocsis and Mary Bartlett Bunge	
35	Trophic factor delivery by gene therapy	514
	Christopher Trimby and George M. Smith	
36	Assessment of sensorimotor function after experimental spinal cord injury and repair	529
	Michael S. Beattie and Jacqueline C. Bresnahan	

Section 6 — Promotion of regeneration in the injured nervous system

37	Biomimetic design of neural prostheses	541
	Joseph J. Pancrazio and P. Hunter Peckham	
38	Brain responses to neural prostheses	554
	Jeffrey R. Capadona and Paul D. Marasco	
39	Brain–computer interfaces	565
	Jonathan R. Wolpaw and Chadwick B. Boulay	
40	Intracranial brain–computer interfaces for communication and control	577
	Beata Jarosiewicz and Leigh R. Hochberg	
41	Stem cell therapies for brain disorders	586
	Lianhua Bai, Brandon Delia, Jordan Hecker, and Robert H. Miller	
42	Understanding motor recovery and compensation in neurorehabilitation	599
	Mindy F. Levin	

Index

609

See color plate section in between pages 328 and 329.
Contents (Volume II – Medical Neurorehabilitation)

Contributor affiliations ix
Preface xvii
Introduction to Neural Repair and Rehabilitation xviii

Section 1 – Technology of neurorehabilitation: outcome measurement and diagnostic technology

1. Clinical trials in neurorehabilitation 1
 Bruce H. Dobkin

2. Understanding the mechanisms underlying recovery after stroke 7
 Gert Kwakkel, Floor E. Buma, and Michael E. Selzer

3. Genetics in neurorehabilitation 25
 Kristin M. Pearson-Fuhrhop and Steven C. Cramer

4. Outcomes measurement: basic principles and applications in stroke rehabilitation 35
 Carol L. Richards, Sharon Wood-Dauphinee, and Francine Malouin

5. Human voluntary motor control and dysfunction 51
 Catherine E. Lang and Marc H. Schieber

6. Assessments, interventions, and outcome measures for walking 61
 Bruce H. Dobkin

7. Clinical pathways 70
 Thomas Platz

8. Electromyography in neurorehabilitation 77
 Amparo Gutierrez and Austin J. Sumner

9. Functional neuroimaging 84
 Nick S. Ward and Richard S. J. Frackowiak

Section 2 – Therapeutic technology

10. Evolving insights into motor learning and their implications for neurorehabilitation 95
 Peter J. Beek and Melvyn Roerdink

11. Balance training 105
 Margaret Mak and Fay B. Horak

12. Functional electrical stimulation in neurorehabilitation 120
 Peter H. Gorman and P. Hunter Peckham

13. Peripheral nerve stimulation 135
 Leonardo G. Cohen and Adriana B. Conforto

14. Brain stimulation 141
 Friedhelm C. Hummel and Pablo Celnik

15. Assistive devices 150
 William C. Mann and Glenn S. Le Prell

16. Wheelchair design and seating technology 161
 Rory A. Cooper, Rosemarie Cooper, Michael L. Boninger, Tasia Bobish, Laura McClure, Annmarie Kelleher, and Tamara L. Pelleshi

17. Rehabilitation robotics, orthotics, and prosthetics for the upper extremity 177
 Hermano I. Krebs, Glauco A. P. Caurin, and Linamara Battistella

18. Rehabilitation robotics, orthotics, and prosthetics: lower limb 190
 Jan Mehrholz and Marcus Pohl

19. Virtual reality applications in neurorehabilitation 198
 Patrice L. (Tamar) Weiss, Rachel Kizony, Uri Feintuch, Debbie Rand, and Noomi Katz

20. Communication devices 219
 Sheela Stuart and Beth Mineo

21. Requirements for valid clinical trials 231
 John D. Steeves

22. Spinal cord injury: mechanisms, cellular and molecular therapies, and human translation 242
 Erna A. van Niekerk and Mark H. Tuszynski

23. Motor neuroprosthetics 253
 Dejan B. Popović and Thomas Sinkjær
Contents

Section 3 — Organization of rehabilitation services

24. **Neurorehabilitative interventions in the acute stage of diseases** 261
 Heinrich Binder

25. **The rehabilitation team and the economics of neurological rehabilitation** 278
 Richard D. Zorowitz and Anthony B. Ward

Section 4 — Symptom-specific neurorehabilitation: sensory and motor dysfunctions

26. **Chronic pain** 289
 Herta Flor and Frank Andrasik

27. **Loss of somatic sensation** 298
 Leanne M. Carey

28. **Management of deforming spastic paresis** 312
 Nicolas Bayle and Jean-Michel Gracies

29. **Contemporary concepts in upper extremity rehabilitation** 330
 Aimee Reiss, Sarah Blanton, and Steven L. Wolf

30. **Gait disorders and rehabilitation** 343
 Volker Dietz

31. **Balance function and dysfunction and the vestibular system** 355
 C.D. Hall and Susan J. Herdman

32. **Deconditioning and energy expenditure** 367
 Marilyn MacKay-Lyons

Section 5 — Vegetative and autonomic dysfunctions

33. **Acute neurorehabilitation for disorders of consciousness** 385
 Theresa Pape

34. **Plasticity in the neural pathways for swallowing: role in rehabilitation of dysphagia** 405
 John C. Rosenbek

35. **Autonomic dysfunction** 415
 Christopher J. Mathias and David A. Low

Section 6 — Cognitive rehabilitation

36. **Rehabilitation for aphasia** 437
 Stefano F. Cappa, Ana Inês Ansaldo, and Edith Durand

37. **Apraxia** 447
 Thomas Platz

38. **Unilateral neglect and anosognosia** 463
 Stephanie Clarke and Claire Bindschaedler

39. **Memory dysfunction** 478
 Jonathan J. Evans

40. **Neurorehabilitation of executive functions** 489
 Gary R. Turner and Mark D’Esposito

41. **Rehabilitation of visual field impairment** 500
 Arash Sahraie and Ceri T. Trevethan

Section 7 — Disease-specific neurorehabilitation systems

42. **Rehabilitation of dementia** 509
 Mijail D. Serruya, Catherine Verrier Piero, Tracey Vause Earland, and Keith M. Robinson

43. **Traumatic brain injury** 535
 Maulik Purohit, Seth Herman, and Ross D. Zafonte

44. **Neurorehabilitation in epilepsy** 550
 Andres M. Kanner

45. **Parkinson’s disease and other movement disorders** 567
 Michael Jöbges, Georg Ebersbach, and Jörg Wissel

46. **Predicting activities after stroke** 585
 Gert Kwakkel, Boudewijn J. Kolten, and John W. Krakauer

47. **Evidence-based benefit of rehabilitation after stroke** 601
 Robert W. Teasell and Ricardo Viana

48. **Rehabilitation in spinal cord injury** 615
 Diana D. Cardenas and Armin Curt

49. **Multiple sclerosis** 637
 Serafin Beer, Fary Khan, and Jürg Kesselring

50. **Neuromuscular rehabilitation: diseases of the motor neuron, peripheral nerve, neuromuscular junction, and the muscle** 655
 Helmar C. Lehmann, Hubertus Köller, and Hans-Peter Hartung

Index 674

See color plate section in between pages 360 and 361.
Contributor affiliations

Frank Andrasik
Department of Psychology, University of Memphis, Memphis, TN, USA

Melissa R. Andrews
Centre for Brain Repair, University of Cambridge, Cambridge, UK

Ana Inés Ansaldo
Centre de recherche, Institut universitaire de gériatrie de Montréal et Département d’Orthophonie et d’Audiologie, Faculté de Medicine, Université de Montréal, Montréal, QC, Canada

Evangelos G. Antzoulatos
Department of Neurology, Physiology, and Behavior, Center for Neuroscience, University of California, Davis, CA, USA

Lianhua Bai
Department of Neuroscience, Center for Translational Neuroscience, Case Western Reserve University, Cleveland, OH, USA

Ellen Barrett
Department of Physiology & Biophysics and Neuroscience Program, University of Miami, Miller School of Medicine, Miami, FL, USA

Linamara Battistella
Department of Physical Medicine and Rehabilitation, University of São Paulo, São Paulo, SP, Brazil

Nicolas Bayle
Arts et Métiers ParisTech, Laboratoire de Biomécanique, and Université Paris Est Créteil (UPEC) and AP-HP, Service de Médecine Physique et de Réadaptation, Unité de Neurorééducation, Groupe Hospitalier Henri Mondor, Créteil, Paris, France

Michael S. Beattie
Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, CA, USA

Peter J. Beek
MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, the Netherlands

Serafin Beer
Department of Neurology and Neurorehabilitation, Rehabilitation Center, Valens, Switzerland

Heinrich Binder
Department of Neurology, Otto Wagner Hospital, Vienna, Austria

Claire Bindschaedler
Service de neuropsychologie et de neuroréhabilitation, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Switzerland

Sarah Blanton
Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA

Tasia Bobish
University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, PA, USA

Michael L. Boninger
University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, PA, USA

Joseph F. Bonner
Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA

Chadwick B. Boulay
Laboratory of Neural Injury and Repair, Wadsworth Center, NYS Department of Health, Albany, NY, USA

Vanessa S. Boyce
Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY, USA
Contributors

Anna-Katharine Brem
Berenson-Allen Center for Noninvasive Brain Stimulation,
Division of Cognitive Neurology, Department of Neurology,
Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, MA, USA

Jacqueline C. Bresnahan
Brain and Spinal Injury Center, Department of
Neurological Surgery, University of California,
San Francisco, CA, USA

Floor E. Buma
Department of Rehabilitation & Sports Medicine, Rudolf
Magnus Institute of Neuroscience, UMC Utrecht,
Utrecht, the Netherlands

Mary Bartlett Bunge
The Miami Project to Cure Paralysis and Departments of
Cell Biology and Neurological Surgery, University of
Miami Miller School of Medicine, FL, USA

John H. Byrne
Department of Neurobiology and Anatomy,
University of Texas Health Science Center at Houston,
Houston, TX, USA

Jeffrey R. Capadona
Department of Biomedical Engineering, CWRU,
and Advanced Platform Technology Center,
Louis Stokes Cleveland Department of Veterans Affairs
Medical Center, Cleveland, OH, USA

Stefano F. Cappa
Division of Neuroscience, Vita-Salute University and San
Raffaele Scientific Institute, Milano, Italy

Diana D. Cardenas
Department of Rehabilitation Medicine, University of
Miami Miller School of Medicine, and Jackson Memorial
Hospital, Miami, FL, USA

Leanne M. Carey
Stroke Division, Florey Institute of Neuroscience and Mental
Health, Melbourne Brain Centre, Heidelberg, Victoria,
Australia

S. Thomas Carmichael
Department of Neurology, David Geffen School of
Medicine at UCLA, Los Angeles, CA, USA

Glauco A. P. Caurin
Department of Mechanical Engineering,
University of São Paulo, São Carlos, SP, Brazil

Pablo Celnik
Departments of Physical Medicine and Rehabilitation,
Neurology and Neuroscience, Johns Hopkins University,
Baltimore, MD, USA

Kimberly M. Christian
Institute for Cell Engineering, Department of Neurology,
Johns Hopkins University School of Medicine,
Baltimore, MD, USA

Stephanie Clarke
Service de Neuropsychologie et de Neuroréhabilitation,
CHUV, Lausanne, Switzerland

Leonardo G. Cohen
National Institute of Neurological Disorders and Stroke,
Bethesda, MD, USA

Adriana B. Conforto
Neurostimulation Laboratory, Neurology Clinical Division,
Hospital das Clínicas/São Paulo University, and Instituto
Israelita de Ensino e Pesquisa Albert Einstein,
São Paulo, Brazil

Rory A. Cooper
University of Pittsburgh and VA Pittsburgh Healthcare
System, Pittsburgh, PA, USA

Rosemarie Cooper
University of Pittsburgh and VA Pittsburgh Healthcare
System, Pittsburgh, PA, USA

Steven C. Cramer
Department of Anatomy & Neurobiology and Department of
Neurology, UCI Medical Center, University of California at
Irvine, Irvine, CA, USA

Armin Curt
Spinal Cord Injury Centre, University Hospital Balgrist,
University of Zurich, Zurich, Switzerland

Mark D’Esposito
Helen Wills Neuroscience Institute and Department of
Psychology, University of California at Berkeley, Berkeley,
CA, USA

Matthew B. Dalva
Department of Neuroscience, Thomas Jefferson University,
Jefferson Hospital for Neuroscience, Philadelphia, PA, USA

Gavriel David
Department of Physiology & Biophysics and Neuroscience
Program, University of Miami, Miller School of Medicine,
Miami, FL, USA

Brandon Delia
Department of Neuroscience, Center for Translational
Neuroscience, Case Western Reserve University, Cleveland,
OH, USA

Wenbin Deng
School of Medicine, University of California at Davis,
Sacramento, CA, USA
<table>
<thead>
<tr>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volker Dietz</td>
</tr>
<tr>
<td>Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland</td>
</tr>
<tr>
<td>Bruce H. Dobkin</td>
</tr>
<tr>
<td>Director, UCLA Neurologic Rehabilitation and Research Program, Geffen UCLA</td>
</tr>
<tr>
<td>School of Medicine, University of California at Los Angeles, Los Angeles, CA,</td>
</tr>
<tr>
<td>USA</td>
</tr>
<tr>
<td>Marco Domeniconi</td>
</tr>
<tr>
<td>Department of Biological Sciences, Hunter College, City University of New</td>
</tr>
<tr>
<td>York, New York, NY, USA</td>
</tr>
<tr>
<td>Edith Durand</td>
</tr>
<tr>
<td>Centre de recherche, Institut universitaire de gériatrie de Montréal,</td>
</tr>
<tr>
<td>Montréal, QC, Canada</td>
</tr>
<tr>
<td>Tracey Vause Earland</td>
</tr>
<tr>
<td>Department of Occupational Therapy, Thomas Jefferson University, Philadelphia,</td>
</tr>
<tr>
<td>PA, USA</td>
</tr>
<tr>
<td>Georg Ebersbach</td>
</tr>
<tr>
<td>Neurologisches Fachkrankenhaus für Bewegungsstörungen/Parkinson, Kliniken</td>
</tr>
<tr>
<td>Beelitz GmbH, Beelitz-Heilstätten, Germany</td>
</tr>
<tr>
<td>Jonathan J. Evans</td>
</tr>
<tr>
<td>Academic Unit of Mental Health & Wellbeing, Institute of Health & Wellbeing,</td>
</tr>
<tr>
<td>University of Glasgow, Glasgow, UK</td>
</tr>
<tr>
<td>James W. Fawcett</td>
</tr>
<tr>
<td>Centre for Brain Repair, University of Cambridge, Cambridge, UK</td>
</tr>
<tr>
<td>Uri Feintuch</td>
</tr>
<tr>
<td>School of Occupational Therapy, Hadassah-Hebrew University, Jerusalem, Israel</td>
</tr>
<tr>
<td>Toby A. Ferguson</td>
</tr>
<tr>
<td>Shriners Hospitals Pediatric Research Center, Department of Neurology,</td>
</tr>
<tr>
<td>Temple University School of Medicine, Philadelphia, PA, USA</td>
</tr>
<tr>
<td>Marie T. Filbin</td>
</tr>
<tr>
<td>Department of Biological Sciences, Hunter College, City University of New</td>
</tr>
<tr>
<td>York, New York, NY, USA</td>
</tr>
<tr>
<td>Diasinou Fioravante</td>
</tr>
<tr>
<td>Department of Neurobiology, Physiology, and Behavior, Center for Neuroscience,</td>
</tr>
<tr>
<td>University of California Davis, CA, USA</td>
</tr>
<tr>
<td>Itzhak Fischer</td>
</tr>
<tr>
<td>Department of Neurobiology and Anatomy, Drexel University College of Medicine,</td>
</tr>
<tr>
<td>Philadelphia, PA, USA</td>
</tr>
<tr>
<td>Agnes Floel</td>
</tr>
<tr>
<td>Human Cortical Physiology Section, National Institute of Neurological</td>
</tr>
<tr>
<td>Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA</td>
</tr>
<tr>
<td>Herta Flor</td>
</tr>
<tr>
<td>Department of Cognitive and Clinical Neuroscience, Central Institute of</td>
</tr>
<tr>
<td>Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany</td>
</tr>
<tr>
<td>Karim Fouad</td>
</tr>
<tr>
<td>Centre for Neuroscience, Faculty of Rehabilitation Medicine, University of</td>
</tr>
<tr>
<td>Alberta, Edmonton, AB, Canada</td>
</tr>
<tr>
<td>Richard S. J. Frackowiak</td>
</tr>
<tr>
<td>Department of Clinical Neurosciences, Université de Lausanne, Centre</td>
</tr>
<tr>
<td>Hospitalier Universitaire Vaudois, Lausanne, Switzerland</td>
</tr>
<tr>
<td>Peter H. Gorman</td>
</tr>
<tr>
<td>Chief Division of Rehabilitation Medicine, University of Maryland Rehabilitation</td>
</tr>
<tr>
<td>and Orthopaedic Institute, and Department of Neurology, University of</td>
</tr>
<tr>
<td>Maryland School of Medicine, Baltimore MD, USA</td>
</tr>
<tr>
<td>Thomas W. Gould</td>
</tr>
<tr>
<td>Department of Physiology and Cell Biology, University of Nevada, Reno, NV,</td>
</tr>
<tr>
<td>USA</td>
</tr>
<tr>
<td>Jean-Michel Gracies</td>
</tr>
<tr>
<td>Arts et Métiers Paris/Tech, Laboratoire de Biomécanique, and Université Paris</td>
</tr>
<tr>
<td>Est Créteil (UPEC) and AP-HP, Service de Médecine Physique et de Rédaptation,</td>
</tr>
<tr>
<td>Unité de Neuroéducation, Groupe Hospitalier Henri Mondor, Créteil, Paris,</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>Amparo Gutierrez</td>
</tr>
<tr>
<td>Department of Neurology, Louisiana State University Medical Center, New</td>
</tr>
<tr>
<td>Orleans, LA, USA</td>
</tr>
<tr>
<td>Kurt Haas</td>
</tr>
<tr>
<td>Brain Research Centre, University of British Columbia, Vancouver, BC, Canada</td>
</tr>
<tr>
<td>C.D. Hall</td>
</tr>
<tr>
<td>James H. Quillen Veterans Affairs Medical Center, Rehabilitation Research</td>
</tr>
<tr>
<td>and Development, Mountain Home, and East Tennessee State University,</td>
</tr>
<tr>
<td>Department of Physical Therapy, Johnson City, TN, USA</td>
</tr>
<tr>
<td>Hans-Peter Hartung</td>
</tr>
<tr>
<td>Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany</td>
</tr>
<tr>
<td>Zhigang He</td>
</tr>
<tr>
<td>Department of Neurology, F.M. Kirby Neurobiology Center, Boston, MA, USA</td>
</tr>
<tr>
<td>Jordan Hecker</td>
</tr>
<tr>
<td>Department of Neuroscience, Center for Translational Neuroscience, Case</td>
</tr>
<tr>
<td>Western Reserve University, Cleveland, OH, USA</td>
</tr>
</tbody>
</table>
Contributors

John W. Krakauer
Department of Neurology and NeuroScience, Johns Hopkins University, Baltimore, MD, USA

Hermano I. Krebs
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, and Department of Neurology and Division of Rehabilitative Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA

Gert Kwakkel
Department of Rehabilitation, University Medical Center, Amsterdam, the Netherlands

Bradley Lang
Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA

Catherine E. Lang
Program in Physical Therapy, Program in Occupational Therapy, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA

Helmar C. Lehmann
Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany

Angelo C. Lepore
Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA

Glenn S. Le Prell
Rehabilitation Research and Development and Health Services Research and Development Services, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA

Mindy F. Levin
School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada

Joel M. Levine
Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY, USA

David A. Low
Autonomic and Neurovascular Medicine Unit, Imperial College London at St Mary’s Hospital and Autonomic Unit, National Hospital for Neurology & Neurosurgery, Queen Square & Institute of Neurology, University College London, London, UK

Marilyn MacKay-Lyons
School of Physiotherapy, Dalhousie University, Halifax, NS, Canada

Jeffrey D. Macklis
Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA USA

Margaret Mak
Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong, China

Francine Malouin
Department of Rehabilitation and Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Laval University, Quebec City, QC, Canada

William C. Mann
Rehabilitation Research and Development and Health Services Research and Development Services, North Florida/South Georgia Veterans Health System, and Department of Occupational Therapy, University of Florida, Gainesville, FL, USA

Paul D. Marasco
Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and Department of Biomedical Engineering, CWRU, Cleveland, OH, USA

Christopher J. Mathias
Autonomic and Neurovascular Medicine Unit, Imperial College London at St Mary’s Hospital and Autonomic Unit, National Hospital for Neurology & Neurosurgery, Queen Square & Institute of Neurology, University College London, London, UK

Laura McClure
University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, PA, USA

Jan Mehrholz
Wissenschaftliches Institut, Private Europäische Medizinische Akademie der Klinik Bavaria in Kreischa GmbH, Kreischa, and SRH Fachhochschule für Gesundheit Gera gGmbH, Gera, Germany

Lorne M. Mendell
Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY, USA

Robert H. Miller
Case Western Reserve University, Cleveland, OH, USA

Carol Milligan
Department of Neurobiology and Anatomy, Neuroscience Program, and ALS Center Wake Forest University School of Medicine, NC, USA
<table>
<thead>
<tr>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beth Mineo</td>
</tr>
<tr>
<td>Center for Applied Science and Engineering and</td>
</tr>
<tr>
<td>Department of Linguistics, University of Delaware,</td>
</tr>
<tr>
<td>Newark, Delaware, USA</td>
</tr>
<tr>
<td>Simon W. Moore</td>
</tr>
<tr>
<td>InVivo Therapeutics Corporation, Cambridge, MA, USA</td>
</tr>
<tr>
<td>Jennifer Morgan</td>
</tr>
<tr>
<td>Eugene Bell Center for Regenerative Biology,</td>
</tr>
<tr>
<td>Marine Biological Lab, Woods Hole, MA, USA</td>
</tr>
<tr>
<td>Charbel E-H. Moussa</td>
</tr>
<tr>
<td>Department of Neuroscience, Georgetown</td>
</tr>
<tr>
<td>University School of Medicine, Washington, DC, USA</td>
</tr>
<tr>
<td>Martin Munz</td>
</tr>
<tr>
<td>Montreal Neurological Institute, McGill University,</td>
</tr>
<tr>
<td>Montreal, QC, Canada</td>
</tr>
<tr>
<td>Randolph J. Nudo</td>
</tr>
<tr>
<td>Landon Center on Aging, Kansas University Medical Center, Kansas City, KS,</td>
</tr>
<tr>
<td>USA</td>
</tr>
<tr>
<td>Joseph J. Pancrazio</td>
</tr>
<tr>
<td>George Mason University, Bioengineering Department,</td>
</tr>
<tr>
<td>Fairfax, VA, USA</td>
</tr>
<tr>
<td>Theresa Pape</td>
</tr>
<tr>
<td>Northwestern University Feinberg School of Medicine,</td>
</tr>
<tr>
<td>Northwestern University, Evanston, IL, USA</td>
</tr>
<tr>
<td>Alvaro Pascual-Leone</td>
</tr>
<tr>
<td>Berenson-Allen Center for Noninvasive Brain Stimulation,</td>
</tr>
<tr>
<td>Division of Cognitive Neurology, Department of Neurology,</td>
</tr>
<tr>
<td>Beth Israel Deaconess Medical Center,</td>
</tr>
<tr>
<td>Harvard Medical School, Boston, MA, USA,</td>
</tr>
<tr>
<td>and Institut Guttmann de Neurorehabilitacio, Universitat Autonoma, Barcelona,</td>
</tr>
<tr>
<td>Spain</td>
</tr>
<tr>
<td>Kristin M. Pearson-Fuhrhop</td>
</tr>
<tr>
<td>Department of Anatomy & Neurobiology, University at California</td>
</tr>
<tr>
<td>Irvine, Irvine, CA, USA</td>
</tr>
<tr>
<td>P. Hunter Peckham</td>
</tr>
<tr>
<td>Case Western Reserve University, Department of Biomedical Engineering and Veteran Affairs Medical Center, Louis Stokes Cleveland Department, Center of Excellence Functional Electrical Stimulation, Cleveland, OH, USA</td>
</tr>
<tr>
<td>Tamara L. Pelleshi</td>
</tr>
<tr>
<td>University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, PA, USA</td>
</tr>
<tr>
<td>Catherine Verrier Piersol</td>
</tr>
<tr>
<td>Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, USA</td>
</tr>
<tr>
<td>Thomas Platz</td>
</tr>
<tr>
<td>BDH-Klinik Greifswald, Ernst-Moritz-Arndt-Universität Greifswald, Germany</td>
</tr>
<tr>
<td>Marcus Pohl</td>
</tr>
<tr>
<td>Neurologie und Fachübergreifende Rehabilitation, Klinik Bavaria in Kreischa GmbH, Kreischa, Germany</td>
</tr>
<tr>
<td>Dejan B. Popović</td>
</tr>
<tr>
<td>Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia, and Center for Sensory Motor Interaction, Aalborg University, Aalborg, Denmark</td>
</tr>
<tr>
<td>Andrew M. Poulos</td>
</tr>
<tr>
<td>Department of Psychology, University of Southern California at Los Angeles, CA, USA</td>
</tr>
<tr>
<td>Maulik Purohit</td>
</tr>
<tr>
<td>Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA</td>
</tr>
<tr>
<td>Hui-Xin Qi</td>
</tr>
<tr>
<td>Department of Psychology, Vanderbilt University, Nashville, TN, USA</td>
</tr>
<tr>
<td>Debbie Rand</td>
</tr>
<tr>
<td>Department of Occupational Therapy, Tel Aviv University, Ramat Aviv, Israel</td>
</tr>
<tr>
<td>Mahendra S. Rao</td>
</tr>
<tr>
<td>Center for Regenerative Medicine, National Institutes of Health, Bethesda, MD, USA</td>
</tr>
<tr>
<td>Josef P. Rauschecker</td>
</tr>
<tr>
<td>Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA</td>
</tr>
<tr>
<td>Aimee Reiss</td>
</tr>
<tr>
<td>Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA</td>
</tr>
<tr>
<td>Carol L. Richards</td>
</tr>
<tr>
<td>Department of Rehabilitation and Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Laval University, Quebec City, QC, Canada</td>
</tr>
<tr>
<td>Keith M. Robinson</td>
</tr>
<tr>
<td>Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA, USA</td>
</tr>
<tr>
<td>Melyvn Roerdink</td>
</tr>
<tr>
<td>MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, the Netherlands</td>
</tr>
<tr>
<td>John C. Rosenbek</td>
</tr>
<tr>
<td>Department of Speech, Language and Hearing Sciences, University of Florida, Gainesville, FL, USA</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press www.cambridge.org
Contributors

Serge Rossignol
Department of Neuroscience, Groupe de Recherche sur le Système Nerveux Central (FRSQ), Sensorimotor Rehabilitation Research Team (SMRRT) of CIHR, Université de Montréal, Montreal, QC, Canada

Edward S. Ruthazer
Montreal Neurological Institute, McGill University, Montreal, QC, Canada

Arash Sahraie
Vision and Attention Laboratories, School of Psychology, University of Aberdeen, Aberdeen, UK

Krishnankutty Sathian
Departments of Neurology, Rehabilitation Medicine and Psychology, Emory University, Rehabilitation R&D Center of Excellence, Atlanta VAMC, Atlanta, GA, USA

Marc H. Schieber
Departments of Neurology and of Neurobiology & Anatomy, University of Rochester, Rochester, NY, USA

Brian J. Schmidt
Department of Physiology and Department of Internal Medicine, Section of Neurology Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada

Michael E. Selzer
Department of Neurology, University of Pennsylvania Medical Center, Philadelphia, PA, USA

Mijail D. Serruya
Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA

Himanshu Sharma
Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA

Michael Shifman
Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA, USA

Jerry Silver
Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA

Thomas Sinkjaer
Center for Sensory Motor Interaction, Aalborg University, Aalborg and Danish National Research Foundation, København, Denmark

George M. Smith
Department of Physiology, Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, USA

Young-Jin Son
Shriners Hospital Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA

Tim Spencer
Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA

John D. Steeves
ICORD (International Collaboration On Repair Discoveries), University of British Columbia (UBC), and Vancouver Coastal Health, Blusson Spinal Cord Centre, Vancouver General Hospital, Vancouver, BC, Canada

Oswald Steward
Reeve-Irvine Research Center, Departments of Anatomy & Neurobiology, Neurobiology & Behavior, and Neurosurgery, University of California at Irvine, Irvine, CA, USA

Sheela Stuart
Children’s Hearing and Speech Center, Division of Neural Sciences and Behavioral Medicine, Children's National Medical Center, Washington, DC, USA

Austin J. Sumner
Department of Neurology, Louisiana State University Medical Center, New Orleans, LA, USA

Chin Lik Tan
Centre for Brain Repair, University of Cambridge, Cambridge, UK

Robert W. Teasell
Department of Physical Medicine & Rehabilitation, Parkwood Hospital, St. Joseph’s Health Care London, University of Western Ontario, London, ON, Canada

Gareth Thomas
Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA, USA

Aiko K. Thompson
Program for Translational Neurological Research, Helen Hayes Hospital, NYS Department of Health, West Haverstraw, NY, USA

Richard F. Thompson
Department of Psychology, USC Keck School of Medicine, Neuroscience Research Institute, Los Angeles, CA, USA

Wesley J. Thompson
Department of Biology, Texas A&M University, College Station, TX, USA
Contributors

Erika Timar
Departments of Neurology and Neuroscience,
Johns Hopkins University, School of Medicine,
Baltimore, MD, USA

Ceri T. Trevethan
Vision and Attention Laboratories, School of Psychology,
University of Aberdeen, Aberdeen, UK

Christopher Trimby
Department of Physiology, Spinal Cord and Brain Injury
Research Center (SCoBIRC), University of Kentucky,
Lexington, KY, USA

Gary R. Turner
Department of Psychology, Faculty of Health York University,
Toronto, ON, Canada

Mark H. Tuszyński
Department of Neurosciences 0626, University of California
at San Diego and La Jolla, and Veterans Administration
Medical Center, San Diego, CA, USA

Erna A. van Niekerk
Department of Neurosciences 0626, University of California
at San Diego and La Jolla, CA, USA

Ricardo Viana
Department of Physical Medicine & Rehabilitation,
Parkwood Hospital, St. Joseph’s Health Care London,
University of Western Ontario, London, ON, Canada

Difei Wang
Centre for Brain Repair, University of Cambridge,
Cambridge, UK

Anthony B. Ward
North Staffordshire Rehabilitation Centre, University Hospital
of North Staffordshire, Stoke-on-Trent, UK

Nick S. Ward
Sobell Department of Motor Neuroscience,
UCL Institute of Neurology, London, USA

Stephen G. Waxman
Department of Neurology and Center for Neuroscience
Research, Yale University School of Medicine,
New Haven, and Rehabilitation Research Center,
VA Connecticut Healthcare System,
West Haven, CT, USA

Patrice L. (Tamar) Weiss
Department of Occupational Therapy,
University of Haifa, Haifa, Israel

Jörg Wissel
Neurologische Rehabilitationsklinik und
Fachkrankenhaus für Neurologische Frührehabilitation,
Kliniken Beelitz GmbH, Beelitz-Heilstätten,
Germany

Steve L. Wolf
Department of Rehabilitation Medicine,
Emory University, Atlanta, GA, USA

Jonathan R. Wolpaw
Laboratory of Neural Injury and Repair,
Wadsworth Center, NYS Department of Health,
Albany, NY, USA

Sharon Wood-Dauphinee
School of Physical and Occupational Therapy,
McGill University, Montreal, QC, Canada

Ross D. Zafonte
Department of Physical Medicine & Rehabilitation,
Harvard University, Boston, MA, USA

Binhai Zheng
Department of Neurosciences, University of
California at San Diego, La Jolla, CA, USA

Richard D. Zorowitz
Department of Physical Medicine and Rehabilitation,
Johns Hopkins University School of Medicine,
Johns Hopkins Bayview Medical Center,
Baltimore, MD, USA
Preface

Neurorehabilitation is a medical specialty that is growing rapidly because medical advances have extended life expectancy and saved the lives of persons who previously would not have survived neurological injury. It is now urgent to develop a rigorous scientific basis for the field. The basic science relevant to functional recovery from neural injury is perhaps the most exciting and compelling of all the medical sciences. It encompasses areas of plasticity, regeneration, and transplantation in the nervous system that individually have been the subjects of many monographs. With the *Textbook of Neural Repair and Rehabilitation*, these areas are integrated with each other and with the clinical topics to which they apply.

The *Textbook of Neural Repair and Rehabilitation* is organized into two volumes. Volume I: *Neural Repair and Plasticity* can stand alone as a textbook for graduate- or advanced undergraduate-level courses on recovery from neural injury. Following an injury to the nervous system, most patients partially regain function, but this is very incomplete. Volume I is subdivided into seven sections covering areas of physiological and anatomical plasticity in the normal and injured nervous system, the determinants of regeneration and therapeutic approaches to restore connectivity and function after neural injury. Chapters cover the anatomical and physiologic responses of neurons to injury, mechanisms of learning and memory, and plasticity in specific areas of the nervous system consequent to intense use, disuse and injury. Ultimately, interventions aimed at repairing the damaged neural circuitry will be required if full function is to be restored. Thus chapters also cover topics on neuronal death, trophic factors, axonal regeneration and the molecules that inhibit it, stem cell biology, and cell transplantation. Compared with the first edition, greater emphasis has been placed on gene and cell based therapies and on intracellular signalling. Section 7 is devoted to translational research applied to human neural injury.

Volume II: *Medical Neurorehabilitation* can stand alone as a clinical handbook for physicians, therapists, rehabilitation nurses, and other neurorehabilitation professionals. It too is organized into seven sections. The first two cover the diagnostic and therapeutic technology of neurorehabilitation and constitute a direct transition from Volume I, emphasizing the applications of basic scientific principles to the practice of neurorehabilitation. Included are new chapters on the design of clinical trials in neurorehabilitation, requirements for valid clinical trials in regenerative therapies, expanded coverage of gene, cell transplantation, and brain stimulation therapies, as well as functional imaging, motor control, gait and balance assessment, electrodiagnosis, virtual reality, and bioengineering and robotic applications to prosthetics and orthotics. The second section includes chapters on the organization of neurorehabilitation services, including a new chapter on rehabilitation during the acute phase of injury. Sections 4–6 cover symptom-specific approaches to neurorehabilitation, including sensory, motor, autonomic, vegetative, and cognitive functions. This includes a new chapter on disorders of consciousness. Section 7 includes 9 chapters on comprehensive approaches to the rehabilitation of persons suffering from the major categories of disabling neurologic disorders, such as spinal cord injury, multiple sclerosis, stroke, and neurodegenerative diseases.

Wherever possible, the chapters in this book refer the reader back to chapters that deal with relevant material at a different level. However, in the second edition, the level of truly interactive content between basic laboratory and clinical science is vastly increased compared to the first edition. It is hoped that, by stressing the integration of clinical and basic scientific knowledge, this book is helping to advance the quality and scientific rigor of neurorehabilitation.
Introduction to *Neural Repair and Rehabilitation*

The first edition of this textbook was published in 2006. At that time, we expressed concern that, among medical specialties, rehabilitation had been one of the slowest to develop a basic science framework and to establish evidence-based practices as its norms. The reasons for the lag in developing a scientific framework for rehabilitation medicine relate in part to the urgent need for clinical service and to the dearth of experienced practitioners in the field during its formative years. Over the last 30 years, interest in understanding the mechanisms underlying recovery of function has increased. An expression of this interest has been the substantial increment in basic science and translational studies geared toward characterizing the extent to which the central nervous system can reorganize to sustain clinical rehabilitation. In the past 6 years, there has been substantial progress in rehabilitation medicine in general, and in neurorehabilitation in particular. The perception among medical professionals that rehabilitation medicine lacks a scientific basis has been reversed to a considerable degree, although not completely, and rehabilitation medicine has yet to achieve its full academic recognition or to fulfill its great potential for relieving human suffering. The goal of this book remains to place the practice of neurorehabilitation in a rigorous scientific framework. Precisely because the need and the potential are so great, the editors have devoted equal space and emphasis to the clinical practice of neurorehabilitation and to its basic science underpinnings. In particular, two areas of basic science are highlighted: neuroplasticity and neural repair. In this respect, the book differs from most clinical textbooks. The professional neurorehabilitation community has been especially supportive of this direction and has taken very active steps to further the development of a basic scientific underpinning for its field. Similarly, the field of rehabilitation medicine, and in particular neurorehabilitation, has made great strides in the development of evidence-based medical practices (Ifejika-Jones and Barrett, 2011; Ottenbacher and Maas, 1999; Practice, 2001; Veerbeek et al., 2014; Weinstein et al., 2003). Although much of the rehabilitation literature continues to rely on relatively weak observational methods (chart review, case series, single-group designs, etc.) (Komaroff and DeLisa, 2009), and large numbers of underpowered studies with high rates of false-negative results cloud meta-analyses and inhibit the establishment of evidence-based practice guidelines (Ottenbacher and Maas, 1999; Veerbeek et al., 2014), this could be argued concerning most fields in medicine, and neurorehabilitation is now on a par with most of medicine. In this respect, the field has undergone a revolution since the first edition. The chapters in the clinical sections of the book stress those therapies for which evidence exists, based on controlled clinical trials.

1. Definitions

Neurorehabilitation

Neurorehabilitation is the clinical subspecialty that is devoted to the restoration and maximization of functions that have been lost due to impairments caused by injury or disease of the nervous system. According to the social model of disability adopted by the World Health Organization (WHO), “impairment” refers to an individual’s biological condition.... whereas “…disability” denotes the collective economic, political, cultural, and social disadvantage encountered by people with impairments.” (Barnes, 2001) These definitions have collapsed older distinctions of the WHO’s 1980 International Classification of Impairments, Disabilities and Handicap (ICIDH) (Langhorne et al., 2011; Thuriaux, 1995). In that classification, “impairment” referred to a biological condition, e.g., spinal cord injury; “disability” referred to the loss of a specific function, e.g., loss of locomotor ability consequent to the impairment; and “handicap” referred to the loss of functioning in society, e.g., inability to work as a postman, consequent to the disability. In order to improve health care data reporting by the nations of the world, the WHO replaced ICIDH with an International Classification of Functioning, Disability and Health (ICF) in 2001. ICF has two parts, each with two components:

Part 1. Functioning and Disability

(a) Body Functions and Structures
(b) Activities and Participation

Part 2. Contextual Factors

(c) Environmental Factors
(d) Personal Factors
It is not possible to review the entire classification here, but because of its widespread use, including some of the chapters in this book, a brief summary is presented in Volume II, Chapter 25. The complete version can be found at http://www3.who.int/icf/icftemplate.cfm. By focusing on components of health, ICF can be used to describe both healthy and disabled populations, whereas the ICIDH focused on consequences of disease and thus had a narrower usefulness. However, the older classification is more useful in understanding the level of interventions and research performed by the rehabilitation community. Traditionally, rehabilitation medicine has concerned itself with disabilities and handicaps but very little with the level of impairment and even less with the molecular and cellular mechanisms that underlie impairments. This state of affairs has changed as rehabilitation professionals recognize the continuity that exists from molecular pathophysiology to impairments, to disabilities, to handicaps. “Neurorehabilitation” now represents the application of this continuum to neurologically impaired individuals.

In recent years, interest in understanding the mechanisms underlying recovery of function has increased dramatically. An expression of this interest has been the substantial increment in basic science and translational studies geared to characterize the extent to which the central nervous system (CNS) can reorganize to sustain clinical rehabilitation.

Neuroplasticity
The term “neuroplasticity” is used to describe the ability of neurons and neuron aggregates to adjust their activity and even their morphology to alterations in their environment or patterns of use. The term encompasses diverse processes, as from learning and memory in the execution of normal activities of life, to dendritic pruning and axonal sprouting in response to injury. Once considered overused and trite, the term “neuroplasticity” has regained currency in the neurorehabilitation community as a concise way to refer to hypothetical mechanisms that may underlie spontaneous or coaxed functional recovery after neural injury, and can now be studied in humans through such techniques as functional imaging (including positron-emission tomography (PET) and functional magnetic resonance imaging (fMRI)), electrical and magnetic event-related potentials and magnetoencephalography (MEG), and noninvasive brain stimulation in the form of transcranial magnetic or electrical stimulation (TMS and trancranial direct current stimulation, TDCS). Anatomical tract tracing can be studied by diffusion tensor imaging (DTI), and the physiological connectivity subsumed by these anatomical connections can be demonstrated by resting state functional connectivity BOLD magnetic resonance imaging (resting state fMRI), in which BOLD fMRI signal concordance is used to infer functional connection between brain locations in health and disease, and thus to better define functional networks (Baldassarre et al., 2012; Carter et al., 2012).

Neural repair
The term “neural repair” has been introduced over the past two decades to describe the range of interventions by which the function of neuronal circuits lost to injury or disease can be restored. Included in this term are means to enhance axonal regeneration, the transplantation of a variety of tissues and cells to replace lost neurons and glial cells, and the use of prosthetic neuronal circuits to bridge parts of the nervous system that have become functionally separated by injury or disease. Although there is overlap with aspects of “neuroplasticity,” the term “neural repair” generally refers to processes that do not occur spontaneously in humans to a degree sufficient to result in functional recovery. Thus therapeutic intervention is necessary to promote repair. The term is useful as part of the basic science of neurorehabilitation because it encompasses more than “regeneration” or “transplantation” alone. In recent years, concepts of neural plasticity have been accepted as important elements in the scientific understanding of functional recovery. The rehabilitation community has been slower to embrace repair as a relevant therapeutic goal. “Neural repair” is used in the title of this textbook in order to convey the breadth of subject matter that it covers and is now considered relevant to neurorehabilitation.

2. History of neurorehabilitation as a medical subspecialty
Origins of rehabilitation medicine
In late 19th century America, interest developed in the possibility that then exotic forms of energy, i.e., electricity, could help to heal patients with diseases and disabilities. In particular, high frequency electrical stimuli were applied to generate deep heat in tissues (diathermy) and some physicians adopted this treatment modality as a specialty. In the early days, X-ray treatments and radiology were closely linked to electrotherapy (Nelson, 1973) and, in 1923, an organization, the American College of Radiology and Physiotherapy was formed, changing its name to the American Congress of Physical Therapy in 1925. This organization merged with the American Physical Therapy Association in 1933, and in 1945 it adopted the name American Congress of Physical Medicine, then American Congress of Physical Medicine and Rehabilitation, and finally, in 1966, the American Congress of Rehabilitation Medicine (ACRM). This is a multidisciplinary organization with membership open to physicians from many specialties and to nonphysician rehabilitation specialists. With the large number of injuries to soldiers in World War I, the need for therapists to attend to their retraining and reintroduction to productive life created a new specialty that was based on physical modalities of treatment, including physical and occupational therapy, diathermy, electrostimulation, heat, and massage. These modalities were expanded during World War II. Training programs for physical therapy technicians were started in the 1920s and an AMA Council on Physical Therapy (later the
Introduction to Neural Repair and Rehabilitation

Council on Physical Medicine) was started in 1926. By 1938, a medical specialty organization, the American Academy of Physical Medicine and Rehabilitation (AAPM&R) was formed and, in 1947, the Academy sponsored a specialty board with a residency requirement and qualifying examination (Krusen, 1969). Gradually, the focus of rehabilitation has broadened to include the social and psychological adjustment to disability, treatment of medical complications such as bed sores, autonomic instability and urinary tract infections, management of pain syndromes, and other medical aspects of the treatment of chronically ill patients. As with the name of the ACRM, the term “Rehabilitation Medicine” has replaced “Physical Medicine and Rehabilitation” in the naming of some hospital and university departments, since the latter term is associated with limitations to specific therapeutic modalities, such as physical therapy, rather than to a target patient population or therapeutic goal, i.e., restoration of function. With variations, parallel developments have occurred in many countries throughout the world.

Establishment of societies of neurorehabilitation

A concomitant of the broadening of the focus of rehabilitation has been a trend toward specialization, including organ system-specific specialization. Previously, the tendency was to approach disabilities generically, based on their symptoms (e.g., gait disorder) and signs (e.g., spasticity), regardless of the cause. But with a growing conviction that the rehabilitation of patients requires knowledge of the pathophysiological basis of their disorders, and with the dramatic increase in knowledge about that pathophysiology, medical specialists outside of PM&R became more interested in the rehabilitation of patients whom they might have treated during the acute phase of their illness. This was especially true among neurologists. The American Academy of Neurology formed a section on rehabilitation and, in 1990, members of that section formed the American Society for Neurorehabilitation, which has expanded its membership to include both physicians and nonphysicians, including basic scientists, with an interest in restoring function to persons with neurological disabilities. National societies of neurorehabilitation were also formed in Europe and more recently in other parts of the world. In 2003, these national societies confederated officially as the World Federation for NeuroRehabilitation (WFNR), designating Neurorehabilitation and Neural Repair as its official journal. As of 2012, there were 32 national and regional societies of neurorehabilitation in the WFNR, representing the majority of the world’s population.

Epidemiology of neurological disabilities

For many years, and especially during the two world wars, the practice of rehabilitation medicine was dominated by orthopedic problems, such as bone fractures and limb amputations. More recently, progress in keeping severely neurologically injured patients alive has shifted the emphasis toward rehabilitation of patients with developmental neurological disorders, stroke, traumatic injuries of the brain and spinal cord, and other chronic disabling diseases. The World Health Organization estimates that more than 300 million people worldwide are physically disabled, of whom over 70% live in developing countries. It is estimated that in the USA, 22% of the adult population have some form of disability. The five conditions most frequently listed as the cause of disability are: arthritis (19%), back problems (17%), heart disease (7%); respiratory disorders (5%); and mental disorders (5%) (CDC, 2009). However, when the burden of disability was measured in disability-adjusted life years (DALYs), the categories of conditions causing the most disability in the USA, in % of total DALYs were: neuropsychiatric disorders (28.5), cardiovascular disease (13.9), malignant neoplasms (13.6), unintentional injuries (6.7), sense organ disorders (6.6), respiratory diseases (6.6), musculoskeletal diseases (3.8), and digestive diseases (3.3). A review of specific diagnoses listed by the World Health Organization (WHO) in a 2009 report for 2004 data revealed that neuropsychiatric disorders accounted for at least 40% of the DALYs in the USA. In the USA, approximately 300,000 people are admitted to inpatient rehabilitation facilities each year. In one survey, orthopedic conditions (hip and limb fractures, amputations, hip replacements) accounted for 20% of rehabilitation admissions, while neurological conditions (stroke, traumatic brain injury, spinal cord injury, polyneuropathy, and other neurological conditions) accounted for 80% (Deutsch et al., 2000). The survey excluded Guillain Barré syndrome, so that the prevalence of neurological disabilities may have been underestimated. Thus disorders of the nervous system are those most often requiring intensive rehabilitation interventions.

3. Outcomes measurement in rehabilitation medicine

The complex medical, emotional, and social problems of the medically disabled patient population, and the complexity of the treatment regimens has made assessing outcomes difficult. As practiced in most countries, rehabilitation is a multidisciplinary process, involving combinations of treatment modalities administered by multiple therapists. Moreover, the most important outcome of the rehabilitation process is the degree of reintegration of the patient in society, in terms of roles in work, family, and community. This also was difficult to assess with the limited instruments available only one generation ago. In order to catch up to other fields in the practice of evidence-based medicine, the rehabilitation field has been forced to become extremely resourceful in designing outcomes measures to evaluate the efficacy of its treatments (Stineman, 2001; Stineman et al., 2003). An especially vexing problem is the extension of outcomes measurements to the recovery of persons with varying baseline levels of neurological function. No single instrument can be equally sensitive to progress at all levels unless a great deal of time is spent establishing the
baseline level and then administering an appropriate test. A great advance has been the use of computer adaptive testing to the population of neurologically impaired subjects in which item selection is tailored to the individual patient (Haley et al., 2006). This has even been applied to rehabilitation of children, whose variation in developmental levels, added to their physical or cognitive impairments, makes them an especially difficult moving target (Dumas et al., 2010; Montpetit et al., 2011; Mulcahey et al., 2008). The resulting sophistication of outcomes measurement has had an important impact on all of medicine, which now routinely considers quality of life in the evaluation of effectiveness in clinical trials.

4. Impact of evidence-based medicine on neurorehabilitation

While outcomes measurement has begun to have an important impact on the evaluation of systems of rehabilitation, and on complex aspects of rehabilitation outcomes, the evaluation of outcomes for specific physical therapy treatments has lagged. A consensus conference was held in 2002, which developed a structured and rigorous methodology to improve formulation of evidence-based clinical practice guidelines (EBCPGs) (Practice, 2001). This was used to develop EBCPGs, based on the literature for selected rehabilitation interventions for the management of low back, neck, knee, and shoulder pain, and to make recommendations for randomized clinical trials. Remarkably, the first two large-scale, prospective, multicenter, randomized clinical trials to test specific physical therapy treatments were published in 2006. These were the trial of body weight supported treadmill training for spinal cord injury (Dobkin et al., 2006) and the trial of constraint-induced movement therapy for upper extremity dysfunction after stroke (Wolf et al., 2006). Based on evidence that amphetamines combined with physical therapy can enhance recovery in animal models of stroke and traumatic brain injury, several small-scale randomized clinical trials gave inconsistent results and, in total, they have not supported this therapy in human stroke patients (Martinsson et al., 2007). Since then, several similarly randomized trials have been published, including studies of robotic-assisted physical therapy. An entire chapter of this second edition is devoted to the design of clinical trials in neurorehabilitation (Volume 2, Chapter 1). According to a recent systematic review, between 2003 and 2011, the number of randomized clinical trials quadrupled from 153 to 476 (Veerbeek et al., 2014). In addition, the methodological quality of these trials improved significantly, suggesting that studies have more closely followed the CONSORT (CONsolidated Standards of Reporting Trials) guidelines to reduce bias in reporting outcomes (http://www.consort-statement.org/consort-statement/).

Impact of the revolution in the science of neuroplasticity and regeneration on neurorehabilitation

Between 1980 and 1986, there was a relatively constant annual publication rate in the field of rehabilitation medicine (350 journal articles/yr ± 55 SD). Then the rate increased dramatically, rising to 4765 in 2010, a 14-fold increase in as many years. A Medline search using the terms “neuroplasticity” or “nerve regeneration” showed a steady or slightly accelerating 12-fold increase during the same time, from 303 to 3761 (Figure 1).

However, the combination of “rehabilitation” and either “neuroplasticity” or “regeneration” did not appear until after the term “neurorehabilitation” became current. As indicated in Figure 2, the term “neurorehabilitation” was used less than ten times/year in medline-indexed articles until 1994. From then until 2010, the number of articles referring to “neurorehabilitation” increased 30-fold. During that same period, the number of articles on “rehabilitation” and “neuroplasticity” or “nerve regeneration” increased 17-fold, from 11 to 192 articles/yr. Similarly, the terms “rehabilitation” and “evidence-based medicine” did not appear in the same article until 1995. From then until 2010, their coincidence increased to more than 300 articles/yr. Thus there appears to be a correlation between the use of the term “neurorehabilitation” and acceleration in the application of
Introduction to Neural Repair and Rehabilitation

Figure 2. The field of neurorehabilitation has fostered the application of research in neuroplasticity and regeneration to rehabilitation.

basic science and evidence-based medicine to rehabilitation research. This can be ascribed to the accelerated interest in organ-specific rehabilitation, and in particular to interest in rehabilitation of patients disabled by neurological disorders. Note that the term “rehabilitation” can be ambiguous when used in isolation. The object could be drug abuse, alcoholism, dilapidated houses, etc. Therefore, in performing Medline searches, it was necessary to restrict the term to “rehabilitation medicine,” “medical rehabilitation,” or “physical rehabilitation,” each of which has slightly different meanings and gave somewhat different numbers, although they were similar. We used “rehabilitation medicine” because it incorporated the concept of a medical specialty, was not restricted to physical modalities of therapy, and gave data that were intermediate between the other two terms. However, the general conclusions described above were the same, regardless of which term was used. On the other hand, in searching for combinations of terms, such as “regeneration” and “rehabilitation,” we used “rehabilitation” rather than “rehabilitation medicine” because the context was already restricted and we were not limiting the search to a formal medical specialty.

Purpose and organization of this book

If most severely disabling disorders are neurological anyway, why write a separate textbook of neurorehabilitation rather than incorporating the rest of rehabilitation medicine into a general rehabilitation textbook? The editors believe that rehabilitation medicine must go beyond optimizing function based on what is left to the body after an injury or illness. Rather, the goal should be full restoration of function by any means necessary, including actual repair of the injured tissues and organs. By focusing on the nervous system, we can present a cogent and intellectually rigorous approach to restoration of function, based on principles and professional interactions that have a deep vertical penetration. This requires two additions to the traditional rehabilitation approach, which considered disabilities and handicaps in the abstract, apart from the specific disease processes that underlie them. First, there is a need to understand the pathophysiological bases of disabling neurological disorders. Second, there is a need to apply basic scientific knowledge about the plastic properties of the nervous system in order to effect anatomical repair and physiological restoration of lost functions.

As in the first edition, this book is presented in two volumes, designed to be used either separately or as an integrated whole. Volume I, Neural Plasticity and Repair, explores the basic science underpinnings of neurorehabilitation and can be used as a textbook for graduate level courses in recovery of function after neural injury. It is divided into two sections. Section 1, Neural Plasticity, includes chapters on the morphological and physiological plasticity of neurons that underlie the ability of the nervous system to learn, accommodate to altered patterns of use, and adapt to injury. Section 2, Neural Repair, includes chapters on the neural responses to injury, stem cells and neurogenesis in the adult CNS, the molecular mechanisms inhibiting and promoting axon regeneration in the CNS and PNS, strategies to promote cell replacement and axon regeneration after injury, the design of prosthetic neural circuitry, and translational research, applying animal experimental results to human patients. Volume II, Medical Neurorehabilitation, will be of greatest interest to clinical rehabilitation specialists, but will be useful to basic scientists who need to understand the clinical implications of their work. The volume is divided into three sections. Section 3, Technology of Neurorehabilitation, contains chapters on outcomes measurement, diagnostic techniques such as functional imaging and clinical electrophysiology, rehabilitation engineering and prosthetics design, and special therapeutic techniques. Section 4, Symptom-Specific Rehabilitation, considers rehabilitation approaches to neurological symptoms that are common to many types of neurological disorders, e.g., spasticity and other motor dysfunctions, autonomic and sexual dysfunctions, sensory disturbances including chronic pain,
and cognitive dysfunctions. Section 5, Disease-Specific Neurorhabilitation Systems, considers the integrated approaches that have been developed to address the rehabilitation of patients with specific diseases and disease categories; i.e., multiple sclerosis, stroke, traumatic brain injury, neurodegenerative diseases, etc. Throughout the two volumes, efforts have been made to relate the basic science to the clinical material. But, whereas in the first edition, this integration was achieved primarily through extensive cross-referencing between the two volumes, in the second edition, the rapid pace of scientific advance has meant that the integration is far more substantive. Thus many chapters in Volume 1 are far more translational than before, and many chapters in Volume 2 incorporate substantial basic science content.

Major advances in neurorehabilitation since the first edition

Every chapter in Volume 1 of this 2nd edition reflects tremendous expansion of our knowledge of the mechanisms underlying response to neural injury, and is rich in implications for potential therapeutic intervention. The past few years have seen an enormous increase in emphasis on the neuron-intrinsic determinants of axonal regeneration and several chapters in Volume 1, e.g., Chapters 1 and 30, discuss the centrality of mTOR and several interlocking signaling pathways in the readiness of neurons to regenerate their axons. However, a great deal of progress has also been made in defining the role of matrix molecules, such as the chondroitin sulfate proteoglycans, in restricting axon growth, and in particular, in sculpting the short-range anatomical plasticity observed in response to CNS injury, e.g., Chapters 12 and 27. Indeed, there has been a greater appreciation of the mechanistic differences between collateral sprouting of spared axons and regeneration of their injured neighbors. Perhaps these differences explain why, after so much progress in discovering the mechanisms of growth inhibition, the degree of functional recovery induced by regenerative therapies remains limited. This and the enormous redundancy of growth-inhibiting pathways has resulted in emphasis being placed on the need to combine therapies (Lu and Tuszyński, 2008; Wang et al., 2012), as described in Volume 2, Chapter 22. The news is not all bad, though. A great deal of progress has been made in understanding the mechanisms of cell death after injury, and of the role of basic metabolic pathways such as ER stress (Chapter 18), presenting many possibilities for pharmacological and molecular interventions. Moreover, recent evidence suggests that, after axotomy, some neurons that were thought to have died had only undergone atrophy, which could be reversed by administration of trophic factors (Chapter 1). The degree to which these neurons could become functional again is not yet established.

The power of basic neuroscience to contribute to our understanding of the response of the nervous system to injury and disease is reflected by an increased representation of the pathobiology and even therapy of specific human neurological disorders in Volume 1, e.g., stroke (Chapter 14, 17), cerebral palsy (Chapter 15), and cognitive disorders (Chapter 16), peripheral neuropathies (Chapter 19), and multiple sclerosis (Chapter 32). There also is expanded coverage of neural prostheses and brain–machine interfaces (Chapters 37–40).

In Volume 2, the section on technology of neurorehabilitation covers a very rapidly growing field, incorporating basic laboratory discoveries in neuroplasticity, motor learning, mechanisms of recovery, genetics, and innovative interventions and technologies. This section reflects the increased emphasis on filling the gaps of the translational research pipeline in this field. Several major roadblocks remain, such as the slow pace of transferring preclinical knowledge into Phase I and II clinical trials, let alone large-scale Phase III and IV trials. Therefore, we have incorporated chapters specifically addressing the design of clinical trials for physical therapeutic modalities, including the development of national and foundation-based programs to enhance inter-institutional links and increase patient recruitment (Chapter 1), and regenerative therapies (Chapter 21). Indeed, the field has advanced to such an extent that a great deal of basic science explanation must be incorporated into the chapters of Volume 2, particularly in the Section on therapeutic technology, e.g., Chapter 3, Genetics in neurorehabilitation, and Chapter 22, Spinal cord injury: mechanisms, molecular therapies, and human translation. On a practical level, this edition also enhances the discussion of critical paths in neurorehabilitation, e.g., Chapter 7, and the evidence in favor of beginning neurorehabilitation in the acute phase of illness.

However, it has become clear that the effects of almost all evidenced-based therapies in neurorehabilitation are heavily dependent on appropriate selection of patients. This requires better insight into the mechanisms of neural recovery and the factors that predict successful functional outcomes. In particular, the precise nature of what is learned or changed neurologically when patients show post-therapy improvement in abilities such as gait and reaching is poorly understood. Chapter 2, on the mechanisms of stroke recovery, addresses this deficit. The chapter assesses whether the amount of true neurological recovery goes beyond the spontaneous recovery post-stroke, and how the time course of improvement correlates with those of observed dynamics in cortical plasticity. This new chapter is a direct link between Volume 2 and the chapters on neural plasticity in Volume 1, particularly the chapters on mechanisms of plasticity after injury to the spinal cord (Chapter 13) and brain (Chapter 14).

Ten new chapters have been added to the Section on technology of neurorehabilitation. Clinical application of scientific advances in neurorehabilitation can seem frustratingly slow, but one is impressed that, even in the sections on symptom- and disease-specific neurorehabilitation, a great deal of scientific progress has been made, for example in the areas of functional imaging, functional brain mapping, and electrodiagnostic approaches (Chapter 26 on chronic pain, Chapter 27 on loss of somatic sensation). A theme that has been
emerging increasingly since the first edition is the importance of intensity of training in promoting functional recovery, as opposed to the specific modality of training. Thus much of the interest in the several evolving forms of robotic assistance has focused on their potential to increase the intensity of training, possibly by home use, or at least by expanding the capabilities of institution-based therapists. But there is also an emerging interest in the role of exercise in enhancing cognitive functions, possibly by BDNF-activated stem cell proliferation in the hippocampus (Chapter 32). Evidence is also accumulating that release of BDNF and other trophic factors and cytokines plays an important role in promoting plasticity in the injured brain, for example after stroke, has become a recurring theme in Volume 2 (Chapters 2, 3, 14, 22, 32, 46, and 47). At present, these insights provide rationales for current rehabilitation therapies, but in the future, may be recruited into more cell-based and molecular therapeutic approaches.

We hope that this effort to provide basic and clinical science chapters that have in mind the common purpose of functional recovery will stimulate the development of basic scientists with a biological understanding of the clinical relevance of their work and of physicians, therapists, and other clinical practitioners and clinician-scientists in the various fields of rehabilitative medicine with curiosity and understanding of the mechanisms underlying their practice.

References

Barnes C. World Health Organization – Disability and Rehabilitation Team Conference Report and Recommendations; 2001; Oslo, Norway. WHO.

