
1 Introduction

1.1 Motivation

We initiate the book with a classical example, which exhibits both the non-
obvious behavior of large dimensional random matrices and the motivation
behind their study.

Consider a random sequence x1, . . . , xn of n independent and identically
distributed (i.i.d.) observations of a given random process. The classical law of
large numbers states that the sequence x1,

x1+x2
2 , . . ., with nth term 1

n

∑n
k=1 xk

tends almost surely to the deterministic value E[x1], the expectation of this
process, as n tends to infinity. Denote (Ω,F, P ) the probability space that
generates the infinite sequence x1, x2, . . .. For a given realization ω ∈ Ω, we
will denote x1(ω), x2(ω), . . . the realization of the random sequence x1, x2, . . ..
We recall that almost sure convergence means that there exists A ⊂ Ω, with
P (A) = 1, such that, for ω ∈ A

1
n

n∑
k=1

xk(ω)→ E[x1] ,
∫

Ω

x1(w)dw.

We also remind briefly that the notation (Ω,F, P ) designates the triplet
composed of the space of random realizations Ω, i.e. in our case ω ∈ Ω is the
realization of a series x1(ω), x2(ω), . . ., F is a σ-field on Ω, which can be seen
as the space of the measurable events on Ω, e.g. the space B = {x1(ω) > 0} ∈ F

is such an event, and P is a probability measure on F, i.e. P is a function that
assigns to every event in F a probability.

This law of large numbers is fundamental in the sense that it provides a
deterministic feature for a process ruled by ‘chance’ (or more precisely, ruled by a
deterministic process, the precise nature of which the observer is unaware). This
allows the observer to be able to retrieve deterministic information from random
variables based on any observed random sequence (within a space of probability
one). If, for instance, x1, . . . , xn are successive samples of a stationary zero mean
white noise waveform x(t), i.e. E[x(t)x(t− τ)] = σ2δ(t), it is the usual signal
processing problem to estimate the power σ2 = E[|x1|2] of the noise process; the
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2 1. Introduction

empirical variance σ2
n, i.e.

σ2
n =

1
n

n∑
i=1

|xi|2

is a classical estimate of σ2 which, according to the law of large numbers, is such
that σ2

n → σ2 almost surely when n→∞. It is often said that σ2
n is a consistent

estimator of σ2 as it is asymptotically and almost surely equal to σ2. To avoid
confusion with the two-dimensional case treated next, we will say instead that
σ2
n is an n-consistent estimator of σ2, as it is asymptotically accurate as n grows

large. Obviously, we are never provided with an infinitely long observation time
window, so that n is usually large but finite, and therefore σ2

n is merely an
approximation of σ2.

With the emergence of multiple antenna systems, channel spreading codes,
sensor networks, etc., signal processing problems have become more and more
concerned with vectorial inputs rather than scalar inputs. For a sequence of
n i.i.d. random vectors, the law of large numbers still applies. For instance,
for x1,x2, . . . ∈ CN randomly drawn from a given N -variate zero mean random
process

Rn =
1
n

n∑
i=1

xixH
i → R , E[x1xH

1 ] (1.1)

almost surely as n→∞, where the convergence is considered for any matrix
norm, i.e. ‖R−Rn‖ → 0 on a set of probability one. The matrix Rn is often
referred to as the empirical covariance matrix or as the sample covariance matrix,
as it is computed from observed vector samples. We will use this last phrase
throughout the book. Following the same semantic field, the matrix R will be
referred to as the population covariance matrix, as it characterizes the innate
nature of all stochastic vectors xi from the overall population of such vectors.
The empirical Rn is again an n-consistent estimator of R of x1 and, as before, as
n is taken very large for N fixed, Rn is a good approximation of R in the sense of
the aforementioned matrix norm. However, in practical applications, it might be
that the number of available snapshots xk is indeed very large but not extremely
large compared to the vector size N . This situation arises in diverse application
fields, such as biology, finance, and, of course, wireless communications. If this is
the case, as will become obvious in the following examples and against intuition,
the difference ‖R−Rn‖ can be far from zero even for large n.

Since the DNA of many organisms have now been entirely sequenced, biologists
and evolutionary biologists are interested in the correlations between genes, e.g.:
How does the presence of a given gene (or gene sequence) in an organism impact
the probability of the presence of another given gene? Does the activation of a
given gene come along with the activation of several other genes? To be able
to study the joint correlation between a large population of the several ten
thousands of human genes, call this number N , we need a large sample of genome
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1.1. Motivation 3

sequences extracted from human beings, call the number of such samples n. It is
therefore typical that the N × n matrix of the n gene sequence samples does not
have many more columns than rows, or, worse, may even have more rows than
columns. We see already that, in this case, the sample covariance matrix Rn is
necessarily rank-deficient (of maximum rank N − n), while R has all the chances
to be full rank. Therefore, Rn is obviously no longer a good approximation of
R, even if n were very large in the first place, since the eigenvalues of Rn and
R differ by at least N − n terms.

In the field of finance, the interest of statisticians lies in the interactions
between assets in the market and the joint time evolution of their stock market
indices. The vectors x1, . . . ,xn here may be representative of n months of market
index evolution ofN different brands of a given product, say soda, the ith entry of
the column vector xk being the evolution of the market index of soda i in month
k. Obviously, this case differs from the independent vector case presented up to
now since the evolution at month k + 1 is somewhat correlated to the evolution
at previous month k, but let us assume for simplicity that the month evolution
is at least an uncorrelated process (which does not imply independence). Similar
to the gene case for biologists, it often turns out that the N × n matrix under
study contains few columns compared to the number of rows, although both
dimensions are typically large compared to 1. Of specific importance to traders
is the largest eigenvalue of the population covariance matrix R of (a centered
and normalized version of) the random process x1, which is an indicator of the
maximal risk against investment returns taken by a trader who constitutes a
portfolio from these assets. From the biology example above, it has become clear
that the eigenvalues of Rn may be a very inaccurate estimate of those of R;
thus, Rn cannot be relied on to estimate the largest eigenvalue and hence the
trading risk. The case of wireless communications will be thoroughly detailed in
Part II, and a first motivation is given in the next paragraph.

Returning to the initial sample covariance matrix model, we have already
mentioned that in the scalar case the strong law of large numbers ensures that
it suffices for n to be quite large compared to 1 for σ2

n to be a good estimator
for σ2. In the case where data samples are vectors, if n is large compared to 1,
whatever N , then the (i, j) entry Rn,ij of Rn is a good estimator of the (i, j)
entry Rij of R. This might (mis)lead us to assume that as n is much greater
than one, Rn ' R in some sense. However, if both N and n are large compared
to 1 but n is not large compared to N , then the peculiar thing happens: the
eigenvalue distribution of Rn (see this as an histogram of the eigenvalues) in
general converges, but does not converge to the eigenvalue distribution of R.
This has already been pointed out in the degenerated case N > n, for which
Rn has N − n null eigenvalues, while R could be of full rank. This behavior is
evidenced in Figure 1.1 in which we consider x1 ∼ CN(0, IN ) and then R = IN ,
for N = 500, n = 2000. In that case, notice that Rn converges point-wise to IN
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4 1. Introduction

0 0.5 1 1.5 2 2.5 3
zero

0.2

0.4

0.6

0.8

Eigenvalues of Rn

D
en

si
ty

Empirical eigenvalues

Marc̆enko–Pastur law

Figure 1.1 Histogram of the eigenvalues of Rn = 1
n

∑n
k=1 xkx

H
k , xk ∈ CN , for

n = 2000, N = 500.

when n is large, as Rn,ij , the entry (i, j) of Rn, is given by:

Rn,ij =
1
n

n∑
k=1

xikx
∗
jk

which is close to one if i = j and close to zero if i 6= j. This is obviously
irrespective of N , which is not involved in the calculus here. However, the
eigenvalues of Rn do not converge to a single mass in 1 but are spread around 1.
This apparent contradiction is due to the fact that N grows along with n but n/N
is never large. We say in that case that, while Rn is an n-consistent estimator
of R, it is not an (n,N)-consistent estimator of R. The seemingly paradoxical
behavior of the eigenvalues of Rn, while Rn converges point-wise to IN , lies in
fact in the rate convergence of the entries of Rn towards the entries of IN . Due
to central limit arguments for the sample mean of scalar i.i.d. random variables,
Rn,ij − E[Rn,ij ] is of order O(1/

√
n). When determining the eigenvalues of Rn,

the deviations around the means are negligible when n is large and N fixed.
However, for N and n both large, these residual deviations of the entries of Rn

(their number is N2) are no longer negligible and the eigenvalue distribution of
Rn is not a single mass in 1. In some sense, we can see Rn as a matrix close to
the identity but whose entries all contain some small residual “energy,” which
becomes relevant as much of such small energy is cumulated.

This observation has very important consequences, which motivate the need
for singling out the study of large empirical covariance matrices and more
generally of large random Hermitian matrices as a unique field of mathematics.
Wireless communications may be the one research field in which large matrices
have started to play a fundamental role. Indeed, current and more importantly
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1.1. Motivation 5

future wireless communication systems are multi-dimensional in several respects
(spatial with antennas, temporal with random codes, cellular-wise with large
number of users, multiple cooperative network nodes, etc.) and random in other
respects (time-varying fading channels, noisy communications, etc.). The study of
the behavior of large wireless communication systems therefore calls for advanced
mathematical tools that can easily deal with large dimensional random matrices.
Consider for instance a multiple input multiple output (MIMO) complex channel
matrix H ∈ CN×n between an n-antenna transmitter and an N -antenna receiver,
the entries of which are independent and complex Gaussian with zero mean and
variance 1/n. If uniform power allocation across the antennas is used at the
transmit antenna array and the additive channel noise is white and Gaussian,
the achievable transmission rates over this channel are all rates less than the
channel mutual information

I(σ2) = E
[
log2 det

(
IN +

1
σ2

HHH

)]
(1.2)

where σ−2 denotes now the signal-to-noise ratio (SNR) at the receiver and the
expectation is taken over the realizations of the random channel H, varying
according to the Gaussian distribution. Now note that HHH =

∑n
i=1 hihH

i

with hi ∈ CN the ith column of H, h1, . . . ,hn being i.i.d. random vectors.
The matrix HHH can then be seen as the sample covariance matrix of some
hypothetical random N -variate variable

√
nh1. From our previous discussion,

denoting HHH = UΛUH the spectral decomposition of HHH, we have:

I(σ2) = E
[
log2 det

(
IN +

1
σ2

Λ
)]

= E

[
N∑
i=1

log2

(
1 +

λi
σ2

)]
(1.3)

with λ1, . . . , λN the eigenvalues of HHH, which again are not all close to one,
even for n and N large. The achievable transmission rates are then explicitly
dependent on the eigenvalue distribution of HHH. More generally, it will be
shown in Chapters 12–15 that random matrix theory provides a powerful
framework, with multiple methods, to analyze the achievable transmission rates
and rate regions of a large range of multi-dimensional setups (MIMO, CDMA,
multi-user transmissions, MAC/BC channels, etc.) and to derive the capacity-
achieving signal covariance matrices for some of these systems, i.e. determine
the non-negative definite matrix P ∈ CN×N , which, under some trace constraint
tr P ≤ P , maximizes the expression

I(σ2; P) = E
[
log det

(
IN +

1
σ2

HPHH

)]

for numerous fading channel models for H.
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6 1. Introduction

1.2 History and book outline

The present book is divided into two parts: a first part on the theoretical
fundamentals of random matrix theory, and a second part on the applications
of random matrix theory to the field of wireless communications. The first part
will give a rather broad, although not exhaustive, overview of fundamental and
recent results concerning random matrices. However, the main purpose of this
part goes beyond a listing of important theorems. Instead, it aims on the one
hand at providing the reader with a large, yet incomplete, range of techniques
to handle problems dealing with random matrices, and on the other hand at
developing sketches of proofs of the most important results in order to provide
further intuition to the reader. Part II will be more practical as it will apply most
of the results derived in Part I to problems in wireless communications, such
as system performance analysis, signal sensing, parameter estimation, receiver
design, channel modeling, etc. Every application will be commented on with
regard to the theoretical results developed in Part I, for the reader to have a
clear understanding of the reasons why the practical results hold, of their main
limitations, and of the questions left open. Before moving on to Part I, in the
following we introduce in detail the objectives of both parts through a brief
historical account of eighty years of random matrix theory.

The origin of the study of random matrices is usually said to date back
to 1928 with the pioneering work of the statistician John Wishart [Wishart,
1928]. Wishart was interested in the behavior of sample covariance matrices of
i.i.d. random vector processes x1, . . . ,xn ∈ CN , in the form of the matrix Rn

previously introduced

Rn =
1
n

n∑
i=1

xixH
i . (1.4)

Wishart provided an expression of the joint probability distribution of
the entries of such a matrix when its column vector entries are themselves
independent and have an identical standard complex Gaussian distribution, i.e.
xij ∼ CN(0, 1). These normalized matrices with i.i.d. standard Gaussian entries
are now called Wishart matrices. Wishart matrices were thereafter generalized
and extensively studied. Today there exists in fact a large pool of properties
on the joint distribution of the eigenvalues, the distribution of the extremes
eigenvalues, the distribution of the ratios between extreme eigenvalues, etc.

The first asymptotic considerations, i.e. the first results on matrices of
asymptotically large dimensions, appeared with the work of the physician Eugene
Wigner [Wigner, 1955] on nuclear physics, who considered (properly scaled)
symmetric matrices with independent entries uniformly distributed in {1,−1}
and proved the convergence of the marginal probability distribution of its
eigenvalues towards the deterministic semi-circle law, as the dimension of the
matrix grows to infinity. Hermitian n× n matrices with independent upper-
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1.2. History and book outline 7
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Figure 1.2 Histogram of the eigenvalues of a Wigner matrix and the semi-circle law,
for n = 500.

triangular entries of zero mean and variance 1/n are now referred to as Wigner
matrices. The empirical eigenvalues of a large Wigner matrix and the semi-
circle law are illustrated in Figure 1.2, for a matrix of size n = 500. From
this time on, infinite size random matrices have drawn increasing attention
in many domains of physics [Mehta, 2004] (nuclear physics [Dyson, 1962a],
statistical mechanics, etc.), finance [Laloux et al., 2000], evolutionary biology
[Arnold et al., 1994], etc. The first accounts of work on large dimensional random
matrices for wireless communications are attributed to Tse and Hanly [Tse and
Hanly, 1999] on the performance of large multi-user linear receivers, Verdú and
Shamai [Verdú and Shamai, 1999] on the capacity of code division multiple
access (CDMA) systems, among others. The pioneering work of Telatar [Telatar,
1995] on the transmission rates achievable with multiple antennas, paralleled by
Foschini [Foschini and Gans, 1998], is on the contrary a particular example of
the use of small dimensional random matrices for capacity considerations. In
its final version of 1999, the article also mentions asymptotic laws for capacity
[Telatar, 1999]. We will see in Chapter 13 that, while Telatar’s original proof
of the capacity growth rate for increasing number of antennas in a multiple
antenna setup is somewhat painstaking, large random matrix theory provides a
straightforward result. In Chapter 2, we will explore some of the aforementioned
results on random matrices of small dimension, which will be shown to be difficult
to manipulate for simply structured matrices and rather intractable to extend
to more structured matrices.

The methods used for random matrix-based calculus are mainly segmented
into: (i) the analytical methods, which treat asymptotic eigenvalue distributions
of large matrices in a comprehensive framework of analytical tools, among
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8 1. Introduction

which the important Stieltjes transform, and (ii) the moment-based methods,
which establish results on the successive moments of the asymptotic eigenvalues
probability distribution.1 The analytical framework allows us to solve a large
range of problems in wireless communications such as those related to capacity
evaluation in both random and orthogonal CDMA networks and in large
MIMO systems, but also to address questions such as signal sensing in large
networks or statistical inference, i.e. estimation of network parameters. These
analytic methods are mostly used when the random matrices under consideration
are sample covariance matrices, doubly correlated i.i.d. matrices, information
plus noise matrices (to be defined later), isometric matrices or the sum and
products of such matrices. They are generally preferred over the alternative
moment-based methods since they consider the eigenvalue distribution of large
dimensional random matrices as the central object of study, while the moment
approach is dedicated to the specific study of the successive moments of the
distribution. Note in particular that not all distributions have moments of
all orders, and for those that do have moments of all orders, not all are
uniquely defined by the series of their moments. However, in some cases of
very structured matrices whose entries are non-trivially correlated, as in the
example of Vandermonde matrices [Ryan and Debbah, 2009], the moment-based
methods convey a more accessible treatment. Both analytical and moment-based
methods are not completely disconnected from one another as they share a
common denominator when it comes to dealing with unitarily invariant random
matrices, such as standard Gaussian or Haar matrices, i.e. unitarily invariant
unitary matrices. This common denominator, namely the field of free probability
theory, bridges the analytical tools to the moment-based methods via derivatives
of the Stieltjes transform, the R-transform, and the S-transform. The latter can
be expressed in power series with coefficients intimately linked to moments and
cumulants of the underlying random matrix eigenvalue distributions. The free
probability tool, due to Voiculescu [Voiculescu et al., 1992], was not initially
meant to deal specifically with random matrices but with more abstract non-
commutative algebras, large dimensional random matrices being a particular case
of such algebras. The extension of classical probability theory to free probability
provides interesting and often surprising results, such as a strong equivalence
between some classical probability distributions, e.g. Poisson, Gaussian, and the
asymptotic probability distribution of the eigenvalues of some random matrix
models, e.g. Wishart matrices and Wigner matrices. Some classical probability
tools, such as the characteristic function, are also extensible through analytic
tools of random matrix theory.

1 Since the terminology method of moments is already dedicated to the specific technique
which aims at constructing a distribution function from its moments (under the condition

that the moments uniquely determine the distribution), see, e.g. Section 30 of [Billingsley,
1995], we will carefully avoid referring to any random matrix technique based on moments
as the method of moments.
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1.2. History and book outline 9

The division between analytical and moment-based methods, with free
probability theory lying in between, can be seen from another point of view.
It will turn out that the analytical methods, and most particularly the Stieltjes
transform approach, take full advantage of the independence between the entries
of large dimensional random matrices. As for moment-based methods, from a free
probability point of view, they take full advantage of the invariance properties
of large dimensional matrices, such as the invariance by the left or right product
with unitary matrices. The theory of orthogonal polynomials follows the same
pattern, as it benefits from the fact that the eigenvalue distribution of unitarily
invariant random matrices can be studied regardless of the (uniform) eigenvector
distribution. In this book, we will see that the Stieltjes transform approach can
solve most problems involving random matrices with invariance properties as
well. This makes this distinction between random matrices with independent
entries and random matrices with invariance properties not so obvious to us.
For this reason, we will keep distinguishing between the analytical approaches
that deal with the eigenvalue distribution as the central object of concern
and the moment-based approaches that are only concerned with successive
moments. We will also briefly introduce the rather old theory of orthogonal
polynomials which has received much interest lately regarding the study of
limiting laws of largest eigenvalues of random matrices but which requires
significant additional mathematical effort for proper usage, while applications
to wireless communications are to this day rather limited, although in constant
expansion. We will therefore mostly state the important results from this field,
particularly in terms of limit theorems of extreme eigenvalues, see Chapter 9,
without development of the corresponding proofs.

In Chapter 3, Chapter 4, and Chapter 5, we will introduce the analytical
and moment-based methods, as well as notions of free probability theory, which
are fundamental to understand the important concept of asymptotic freeness
for random matrices. We will also provide in these chapters a sketch of the
proof of the convergence of the eigenvalue distribution of the Wishart and
Wigner matrices to the Marc̆enko–Pastur law, depicted in Figure 1.1, and the
semi-circle law, depicted in Figure 1.2, using the Stieltjes transform and the
method of moments, respectively. Generic methods to determine (almost sure)
limiting distributions of the eigenvalues of large dimensional random matrices,
as well as other functionals of such large matrices (e.g. log determinant), will
be reviewed in detail in these chapters. Chapter 6 will discuss the alternative
methods used when the empirical eigenvalue distribution of large random
matrices do not necessarily converge when the dimensions increase: in that
case, in place of limit distributions, we will introduce the so-called deterministic
equivalents, which provide deterministic approximations of functionals of random
matrices of finite size. These approximations are (almost surely) asymptotically
accurate as the matrix dimensions grow to infinity, making them consistent
with the methods developed in Chapter 3. In addition to limiting eigenvalue
distributions and deterministic equivalents, in Chapter 3 and Chapter 6, central
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10 1. Introduction

limit theorems that extend the convergence theorems to a higher precision
order will be introduced. These central limit theorems constitute a first step
into a more thorough analysis of the asymptotic deviations of the spectrum
around its almost sure limit or around its deterministic equivalent. Chapter 7
will discuss advanced results on the spectrum of both the sample covariance
matrix model and the information plus noise model, which have been extensively
studied and for which many results have been provided in the literature, such
as the proof of the asymptotic absence of eigenvalues outside the support
of the limiting distribution. Beyond the purely mathematical convenience of
such a result, being able to characterize where the eigenvalues, and especially
the extreme eigenvalues, are expected to lie is of fundamental importance to
perform hypothesis testing decisions and in statistical inference. In particular,
the characterization of the spectrum of sample covariance matrices will be used
to retrieve information on functionals of the population covariance matrix from
the observed sample covariance matrix, or functionals of the signal space matrix
from the observed information plus noise matrix. Such methods will be referred to
as eigen-inference techniques and are developed in Chapter 8. The first part will
then conclude with Chapter 9, which extends the analysis of Section 7.1 to the
expression of the limiting distributions of the extreme eigenvalues. We will also
introduce in this chapter the spiked models, which have recently received a lot of
attention for their many practical implications. These objects are necessary tools
for signal sensing in large dimensional networks, which are currently of major
interest with regard to the recent incentive for cognitive radios. In Chapter 10,
the essential results of Part I will finally be summarized and rediscussed with
respect to their applications to the field of wireless communications.

The second part of this book is dedicated to the application of the different
methods described in the first chapter to different problems in wireless
communications. As already mentioned, the first applications of random matrix
theory to wireless communications are exclusively related to asymptotic system
performance analysis, and especially channel capacity considerations. The idea
of considering asymptotically large matrix approximations was initially linked
to studies in CDMA communications, where both the number of users and the
length of the spreading codes are potentially very large [Li et al., 2004; Tse and
Hanly, 1999; Tse and Verdú, 2000; Tse and Zeitouni, 2000; Zaidel et al., 2001]. It
then occurred to researchers that large matrix approximations work rather well
when the size of the effective matrix under study is not so large, e.g. for matrices
of size 8× 8 or even 4× 4 (in the case of random unitary matrices, simulations
suggest that approximations for matrices of size 2× 2 are even acceptable). This
motivated further studies in systems where the number of relevant parameters
is moderately large. In particular, studies of MIMO communications [Chuah
et al., 2002; Hachem et al., 2008b; Mestre et al., 2003; Moustakas and Simon,
2005; Müller, 2002], designs of multi-user receivers [Honig and Xiao, 2001;
Müller and Verdú, 2001], multi-cell communications [Abdallah and Debbah,
2004; Couillet et al., 2011a; Peacock et al., 2008], multiple access channels and
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