Tooth Development in Human Evolution and Bioarchaeology

Humans grow at a uniquely slow pace compared with other mammals. When and where did this schedule evolve? Have technological advances, farming and cities had any effect upon it?

Addressing these and other key questions in palaeoanthropology and bioarchaeology, Simon Hillson examines the unique role of teeth in preserving detailed microscopic records of development throughout childhood and into adulthood. The text critically reviews theory, assumptions, methods and literature, providing the dental histology background to anthropological studies of both growth rate and growth disruption. Chapters also examine existing studies of growth rate in the context of human evolution and primate development more generally, together with implications for life history. The final chapters consider how defects in the tooth development sequence shed light on the consequences of biological and social transitions, contributing to our understanding of the evolution of modern human development and cognition.

Simon Hillson is Professor of Bioarchaeology at the Institute of Archaeology, University College London. He has over thirty-five years of experience in teaching and research in dental anthropology, with research focussing on the development and diseases of teeth and the ways in which these can shed light on the way of life of people in the past. His previous books include Teeth (Cambridge University Press, second edition, 2005) and Dental Anthropology (Cambridge University Press, 1996).
Contents

Acknowledgements

1 Why development and why teeth?

2 Development schedule, body size and brain size
 How development is studied
 Human growth in body size
 Body size growth in non-human primates
 Growth in different systems of the body
 Summary

3 How teeth grow in living primates
 Process of dental development
 Issues in studying dental development
 Dental eruption
 Tooth formation
 Summary

4 Microscopic markers of growth in dental tissues
 The tooth surface
 Microscopy of the crown surface
 Structures seen in sections of teeth
 Summary

5 Building dental development sequences
 Underlying principles
 Methodological issues
 Development chronologies for living and fossil primates
 Summary
6 Human evolution, pace of development and life history 149
 Life history 149
 Characteristic features of human life history 150
 Life history of fossil primates 153
 Weaning, giving birth and the expansion of post-canine teeth 155
 Fast and slow mammals and Schultz’s rule of eruption 157
 Life history, development and cognition in primates 158
 Summary 159

7 Dental markers of disease and malnutrition 162
 Hypoplastic defects 162
 Wilson bands, pathological striae or accentuated lines 174
 Recording enamel hypoplasia by simple surface observation 176
 Building sequences of defects 181
 Causes of enamel hypoplasia 184
 Summary 195

8 Health, stress and evolution: case studies in bioarchaeology and palaeoanthropology 198
 Health, stress and prevalence 198
 Case studies in bioarchaeology and palaeoanthropology 205
 Summary 225

9 Conclusions 228

Appendix A: Tables 231
Appendix B: Technical information 261
References 273
Index 302
I wish to acknowledge my debt to the teaching of Alan Boyde and Sheila Jones at University College London (UCL) at the start of my career. Their extraordinary dental and skeletal anatomy course has been the foundation for many other researchers in this field as well as myself. The original idea for using microscopic incremental structures in dental enamel to build a schedule of development goes back to Alan Boyde's work published in 1963. I have also had the benefit of working at UCL alongside other former students of the course, including Chris Dean and Daniel Antoine. This has provided not only inspiration, but also a reality check for my ideas. I have further benefitted from discussions with other members of the extended family of histologists and anthropologists working in this area, in particular Don Reid at Newcastle University, Louise Humphrey at the Natural History Museum in London and Charles FitzGerald of McMaster University. My UCL colleague Tony Waldron has been generous with advice on epidemiology and I wish in particular to remember Phil Walker, who very sadly died in 2009. I greatly miss my conversations with him and the approach I have taken in my review of enamel hypoplasia in Chapters 7 and 8 grew out of a brief chat at a conference. Over the years I have learned much from similar conversations, especially with the international group of dental histology researchers such as Debbie Guatelli Steinberg, Tania Smith, Rebecca Ferrell and Paul Tafforeau. I am grateful for all this advice, but of course, I take full responsibility for the ideas and opinions expressed in this book. As always, I am also grateful to my much-loved and long-suffering family at home for all their support.