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1 Static Plastic Behaviour of Beams

1.1 Introduction

Many ductile materials which are used in engineering practice have a considerable

reserve capacity beyond the initial yield condition. The uniaxial yield strain of mild

steel, for example, is 0.001 approximately, whereas this material ruptures, in a stand-

ard static uniaxial tensile test, at an engineering strain of 0.3, approximately. This

reserve strength may be utilised in a structural design to provide a more realistic

estimate of the safety factor against failure for various extreme loads. Thus, the

static plastic behaviour of structures has been studied extensively and is introduced

in many textbooks.(1.1–1.11) An interested reader is referred to these textbooks for a

deeper presentation of the subject than is possible in this book, which is concerned

primarily with the influence of dynamic loadings. However, the methods of dynamic

structural plasticity presented in this book owe a substantial debt to the theoretical

foundation of static structural plasticity, which is, therefore, reviewed briefly in this

chapter and the following one.

A considerable body of literature is available on the static behaviour of structures

made from ductile materials which may be idealised as perfectly plastic. This sim-

plification allows the principal characteristics and overall features of the structural

response to be obtained fairly simply for many important practical cases. Moreover,

the static collapse loads predicted by these simplified methods often provide good

estimates of the corresponding experimental values. Indeed, the design codes in

several industries now permit the use of plasticity theory for the design of various

structures and components. The theoretical background of these methods, which

were developed primarily to examine the static loading of structures made from

perfectly plastic materials, are valuable for studies into the response of structures

subjected to dynamic loads. Thus, this chapter and the next focus on the static

behaviour of structures which are made from perfectly plastic materials.

The basic equations which govern the static behaviour of beams are introduced

in the next section. The plastic collapse, or limit moment, is also derived in § 1.2 for

a beam with a solid rectangular cross-section which is subjected to a pure bending

moment. However, considerable effort is required sometimes to obtain the exact

collapse load of a beam which is subjected to a more general form of loading. Thus,

the lower and upper bound theorems of plastic collapse are proved in § 1.3. These
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2 Static Plastic Behaviour of Beams

theorems provide a simple yet rigorous procedure for bounding the exact plastic

collapse load of a beam which is subjected to any form of external loading, as

illustrated in § 1.4 to § 1.7 for several cases.

A heuristic approach is introduced in § 1.8 and used to obtain the exact static

plastic collapse load of a partially loaded beam. Some experimental results are

reported in § 1.9 and a few final remarks are given in § 1.10.

1.2 Basic Equations for Beams

Beams are defined as structural members having a length which is large compared

with the corresponding width and depth. It is observed in this circumstance that

the lateral, or transverse, shear stresses are small compared with the axial, or longi-

tudinal, stresses. Moreover, it is reasonable to replace the actual force distribution

across the depth of a beam by a lateral, or transverse, shear force Q(Q = ∫AσxzdA)

and a bending moment M (M = ∫AσxzdA), as shown in Figure 1.1. The actual strain

field is then described in terms of the curvature change of the longitudinal axis.†

These assumptions lead to considerable simplifications in analyses, and are the usual

ones which are incorporated in the engineering theory of elastic beams. It has been

shown by Hodge(1.2) that these approximations are also acceptable for the behaviour

of perfectly plastic beams.

The moment and lateral force equilibrium equations for the beam in Figure 1.1

are

dM/dx = Q (1.1)

and

dQ/dx = −p, (1.2)

respectively, when the response is time-independent and where p is the external load

per unit length. The corresponding change in curvature of the longitudinal axis is

κ = −d2w/dx2, (1.3)‡

provided dw/dx ≪ 1.

Now consider a beam with a solid rectangular cross-section of breadth B and

depth H, as shown in Figure 1.2(a). This beam is made from the elastic, perfectly

plastic material in Figure 1.3 and is subjected to a pure bending moment M. Initially,

the stress distribution across the depth of this beam is linear (see Figure 1.2(b)),

so that the corresponding M–κ relation is also linear with a slope EI, as shown in

† The bending moment M produces a curvature change and is known as a generalised stress,(1.3)

whereas the transverse shear force Q is a reaction since it does not produce any deformation of a

beam.
‡ The curvature change is known as a generalised strain.(1.3) The product of generalised stress and the

corresponding generalised strain rate gives a positive (or zero) energy dissipation rate (i.e., Mκ̇ ≥ 0,

where (·) is a time derivative).
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1.2 Basic Equations for Beams 3

Figure 1.1. Notation for a beam.

Figure 1.2. Development of the plastic zones in an elastic, perfectly plastic beam with a
rectangular shaped cross-section and subjected to a pure bending moment: (a) rectangular
cross-section; (b) elastic stress distribution; (c) elastic, perfectly plastic stress distribution; (d)
fully plastic stress distribution. + and − denote tensile and compressive stresses, respectively,
for a pure bending moment acting, as shown in Figure 1.1.

Figure 1.3. Elastic, perfectly plastic and rigid, perfectly plastic uniaxial stress–strain
idealisations.
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4 Static Plastic Behaviour of Beams

Figure 1.4. Moment–curvature characteristics for a beam with a rectangular cross-section.

Figure 1.4. (E is Young’s modulus and I is the second moment of area for the cross-

section.) If the applied bending moment is increased beyond the magnitude of the

yield moment

My = 2Iσ0/H = σ0 BH2/6, (1.4)†

then yielding occurs in outer zones, as indicated in Figure 1.2(c), while the associated

M–κ relation becomes non-linear. The applied bending moment can be increased

further until the entire cross-section has yielded plastically and the strength of

the beam has been exhausted, as shown in Figure 1.2(d). This maximum bending

moment is known as the limit or collapse moment for the cross-section and can be

written as

M0 = (σ0 BH/2) H/2 = σ0 BH2/4, (1.5)‡

which follows from Figure 1.2(d). In order to simplify theoretical calculations on

the plastic behaviour of beams with solid rectangular cross-sections, the moment–

curvature relation is often replaced by the rigid, perfectly plastic or bilinear approx-

imations illustrated in Figure 1.4.

It is observed from equations (1.4) and (1.5) for a beam with a solid rectangular

cross-section that

M0 = 1.5My. (1.6)

† The elastic behaviour of beams is considered in many textbooks, e.g., Venkatraman and Patel.(1.12)

‡ The stress field σ x = ± σ 0, σ y = σ z = σ xy = σ xz = σ yz = 0 , which accompanies the limit moment

M0, satisfies the equilibrium equations for a three-dimensional continuum, even though there is a

discontinuity in σ x at z = 0 . It is evident from Figure 1.4 that the change in curvature κ , which is

defined by equation (1.3), is positive when the limit moment M0 is reached. This gives rise to a strain

field (ǫx = zκ, ǫy = ǫz = −νzκ, ǫxy = ǫxz = ǫyz = 0) which satisfies the compatibility equations for a

three-dimensional continuum.
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1.3 Plastic Collapse Theorems for Beams 5

Table 1.1. Shape factors

M0

My
1.50 1.70

6 + 3λ

6 + 2λ

λ =
Ht

2Bh

t ≪ B, h ≪ H

The factor 1.5 is known as a shape factor and depends on the cross-sectional shape

of a beam, as shown in Table 1.1.

The preceding discussion was developed for a beam which was subjected to a

pure bending moment. In general, the loading on an actual beam would produce a

much more complicated distribution of bending moments, which would be accom-

panied by lateral shear forces, as indicated by equations (1.1) and (1.2). However, it

has been observed by Hodge(1.2) that the influence of these lateral shear forces on the

magnitude of the plastic collapse moment of a cross-section may be disregarded for

many structures which may be meaningfully called beams.† Thus, the limit moment

at any location on an actual beam with a solid rectangular cross-section would

be given by equation (1.5). In passing, it should be remarked that a kinematically

admissible‡ collapse mechanism must form in order to develop the maximum

strength of an actual beam. Consequently, the collapse load may well be larger

than the shape factor times the load necessary to produce initial yielding of a beam

(i.e., My).§

1.3 Plastic Collapse Theorems for Beams

1.3.1 Introduction

It was shown in the previous section that M0 given by equation (1.6) is the plastic

collapse or limit moment for a perfectly plastic beam with a solid rectangular

cross-section when subjected to a pure bending moment. Clearly, the static load

† Transverse shear effects are sometimes important for the static loading of beams with open cross-

sections, and design methods are available to cater for the combined influence of a transverse

shear force and a bending moment on the plastic yielding of a beam cross-section.(1.7) How-

ever, transverse shear effects are potentially more important for dynamic loadings, as discussed in

Chapter 6.
‡ A kinematically admissible collapse mechanism is a displacement field which satisfies the displace-

ment boundary conditions, gives strains which satisfy the plastic incompressibility condition (con-

stant volume) and allows the external loads to do positive work.
§ See footnote of equation (1.32) for a specific example.
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6 Static Plastic Behaviour of Beams

carrying capacity of the cross-section is exhausted and collapses, as illustrated in Fig-

ure 1.4. However, what is the carrying capacity of a beam with an external load which

produces a bending moment distribution which varies along the axis?

The limit theorems of plasticity have been developed in order to provide simple

estimates for the static collapse loads of perfectly plastic beams subjected to any

form of external static loading. The lower and upper bound theorems of plasticity,

which uncouple the static (equilibrium) and kinematic (deformation) requirements

of a theoretical solution, are introduced in the next two sections.

1.3.2 Lower Bound Theorem

1.3.2(a) Statement of Theorem

If any system of bending moments, which is in equilibrium with the applied loads

and which nowhere violates the yield condition, can be found, then the beam will

not collapse, or is at the point of collapse (incipient collapse).

1.3.2(b) Proof of Theorem

It is assumed that a set of external concentrated and distributed loads denoted

by F(x) just causes collapse (incipient collapse) of a beam. The associated collapse

mechanism for the beam is characterised by a velocity profile ẇ(x) and rotation

rates θ̇ with θ̇ i at i discrete locations (hinges). The bending moment distribution at

collapse is M(x) and Mi at the plastic hinges.

Now, the principle of virtual velocities† gives

∑

Mi θ̇ i =

∫

Fẇ dx, (1.7)

since M and F form an equilibrium set, while θ̇ and ẇ are a kinematic set. All plastic

hinge locations within the span of a beam and at the supports are included in the

summation
∑

, while the integral on the right-hand side of equation (1.7) extends

over the entire beam.

The lower bound theorem of plasticity seeks to determine the multiplier λl so

that the external load λlF(x) does not cause collapse and is safely supported by a

beam.‡ The associated bending moment distribution M s(x) is statically admissible

when it satisfies the equilibrium equations (1.1) and (1.2) and nowhere exceeds the

yield moment M0 for the beam cross-section.

It is evident that Ms and λl F are in equilibrium, and therefore the principle of

virtual velocities predicts

∑

Ms
i θ̇ i =

∫

λl Fẇ dx, (1.8)

which, when subtracted from equation (1.7), gives

(1 − λl)

∫

Fẇ dx =
∑

(Mi − Ms
i )θ̇ i . (1.9)

† The principle of virtual velocities is discussed in Appendix 3.
‡ This is known as proportional loading because only a proportional combination of loads are con-

sidered.
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1.3 Plastic Collapse Theorems for Beams 7

The generalised stress (M) and generalised strain rate (θ̇) are defined to give

a non-negative energy dissipation rate (Mθ̇ ≥ 0), as observed in the footnote to

equation (1.3).† Moreover, |Ms| ≤ |M| throughout a beam according to the definition

of a statically admissible bending moment field. Thus,

(Mi − Ms
i )θ̇ i ≥ 0, (1.10)

and, therefore, equation (1.9) predicts that

(1 − λl)

∫

Fẇ dx ≥ 0,

or

λl ≤ 1, (1.11)

since the external work rate
∫

Fẇ dx ≥ 0.

Equation (1.11) constitutes the proof of the lower bound theorem for beams

which is stated in § 1.3.2(a).

1.3.3 Upper Bound Theorem

1.3.3(a) Statement of Theorem

If the work rate of a system of applied loads during any kinematically admissible

collapse of a beam is equated to the corresponding internal energy dissipation rate,

then that system of loads will cause collapse, or incipient collapse, of the beam.

1.3.3(b) Proof of Theorem

It is assumed that a beam collapses under a load λuF(x) with a bending moment field

Mk(x) and an associated kinematically admissible velocity field ẇk(x), which has

rotation rates θ̇k
j at j discrete locations (plastic hinges). Thus, equating the external

work rate to the internal energy dissipation during a kinematically admissible col-

lapse gives

∑

Mk
j θ̇k

j =

∫

λu Fẇk dx, (1.12)‡

where Mk
j is the bending moment at the plastic hinges in the kinematically admissible

collapse mechanism. Moreover,

∑

Mj θ̇
k
j =

∫

Fẇk dx, (1.13)

according to the principle of virtual velocities when using the equilibrium set

(M,F) for the exact solution discussed in § 1.3.2(b). Subtracting equation (1.13)

from equation (1.12) leads to

(λu − 1)

∫

Fẇk dx =
∑

(Mk
j − Mj )θ̇

k
j . (1.14)

† If Mi = M0, then θ̇ i ≥ 0, while θ̇ i ≤ 0, when Mi = −M0. In both cases Mi θ̇ i ≥ 0.
‡ Equation (1.12) is a definition for λu.
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8 Static Plastic Behaviour of Beams

It is evident that |Mj | ≤ |Mk
j |, where Mk

j = ±M0; and therefore (Mk
j − Mj )θ̇

k
j ≥ 0,

so that equation (1.14) requires

λu ≥ 1 (1.15)

because
∫

Fẇkdx ≥ 0. Inequality (1.15) constitutes the proof of the upper bound

theorem for perfectly plastic beams which is stated in § 1.3.3(a).

1.3.4 Exact Static Collapse Load

The inequalities (1.11) and (1.15) may be written

λl ≤ 1 ≤ λu. (1.16)

If

λl = λu = 1, (1.17)

then a theoretical solution is simultaneously statically admissible (i.e., satisfies the

requirements of the lower bound theorem) and kinematically admissible (i.e., satis-

fies the requirements of the upper bound theorem) and is, therefore, exact.

1.4 Static Plastic Collapse of a Cantilever

The limit theorems of plasticity, which were introduced in the previous sec-

tion, are now used to obtain the static collapse load of the cantilever beam in

Figure 1.5(a). The cantilever beam is made from a perfectly plastic material, is stat-

ically determinate, and has a linear bending distribution with a maximum value

M = −PL (1.18)

at x = 0. Thus, the elastic stress distribution according to the elementary beam

bending theory is σx = zM/I. This expression may be used to predict that a load

PE = 2σ0 I/HL (1.19)

could be supported in a wholly elastic manner when the beam cross-section is sym-

metric about the y-axis, where I is the second moment of area for the cross-section

and σ0 is the uniaxial plastic flow stress.

The bending moment distribution PE(L− x), which is associated with the load

PE, satisfies the requirements of the lower bound theorem of plasticity in § 1.3.2.

However, we observe from equation (1.18) that a higher lower bound is

Pl = M0/L, (1.20)

since it gives M = −M0 at x = 0 and produces a bending moment distribution which

nowhere violates the yield condition for a beam with the rigid, perfectly plastic, or

bilinear approximation characteristics in Figure 1.4. The extent of the plastic flow

region, which is associated with Pl, is sketched in Figure 1.6 for a beam with a

rectangular cross-section. In this case, the stress distribution across the beam cross-

section at the support (x = 0) would be similar to that in Figure 1.2(d) but with the

signs of the stresses reversed. By way of contrast, the plastic flow would be confined
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1.4 Static Plastic Collapse of a Cantilever 9

Figure 1.5. (a) Cantilever beam with an end load. (b) Transverse velocity profile for a canti-
lever beam with a plastic hinge at the support.

to the extreme elements (z = ±H/2) located at x = 0 (i.e., locations A and B in

Figure 1.6) when the beam is subjected to the load PE.

The transverse velocity field, which is shown in Figure 1.5(b), may be employed

to calculate an upper bound to the exact collapse load according to the method

outlined in § 1.3.3. Therefore,

M0θ̇ = Pu Lθ̇

or

Pu = M0/L. (1.21)

Figure 1.6. Elastic and plastic regions at collapse of the cantilever beam in Figure 1.5 with a
rectangular cross-section.
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10 Static Plastic Behaviour of Beams

Thus, the exact static collapse or limit load of the perfectly plastic cantilever

beam, which is illustrated in Figure 1.5(a), is Pc = M0/L, since both the lower and

the upper bound calculations predict the same result. It is observed that the cantilever

beam may support a load which is 50 percent larger than the maximum elastic value

PE given by equation (1.19) when the cross-section is rectangular (I = BH3/12,

M0 = BH2σ0/4). In the case of a beam with a circular cross-section, then, according

to Table 1.1, the plastic collapse load would be 1.70 times the initial yield value,

which is predicted by an elementary linear elastic analysis.

The limit theorems of plasticity are valid for beams made from elastic, perfectly

plastic or rigid, perfectly plastic materials. In other words, the exact static collapse

load is identical for beams which are made from either material. In fact, it is evident

from equation (1.5) in § 1.2 that the fully plastic bending moment M0 is independent

of the modulus of elasticity for the material. It is clear, therefore, that the limit

theorems of plasticity bound the exact static plastic collapse load of a beam without

any consideration of the complex elastic–plastic behaviour illustrated, for example,

in Figure 1.6 for a cantilever beam with a rectangular cross-section.

1.5 Static Plastic Collapse of a Simply Supported Beam

The limit theorems of plasticity in § 1.3 are now used to obtain the limit load of the

simply supported beam in Figure 1.7(a) which is made from a rigid, perfectly plastic

material.

If a plastic hinge forms at the beam centre owing to the action of a uniformly

distributed pressure pu as shown in Figure 1.7(b), then an upper bound calculation

(i.e., external work rate equals internal work rate) gives

2 (pu L)
(

Lθ̇/2
)

= M02θ̇

or

pu = 2M0/L2. (1.22)

The bending moment distribution in the region 0 ≤ x ≤ L of the beam in Fig-

ure 1.7(a) is

M = p
(

L2 − x2
)

/2, (1.23)†

which has the largest value

M = pL2/2 (1.24)

at the beam centre. Thus, the bending moment distribution (equation (1.23)) is

statically admissible (i.e., −M0 ≤ M ≤ M0) for a pressure

pl = 2M0/L2, (1.25)

which when substituted into equation (1.23) gives

M/M0 = 1 − (x/L)2, (1.26)

as shown in Figure 1.8.

† This expression may be obtained from a free body diagram for the portion of the beam of length

L − x or from the solution of the equilibrium equations (1.1) and (1.2) with M = 0 at x = L and

Q = 0 at x = 0.
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