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Part One: Inside Our Computable World, and the
Mathematics of Universality

Turing-Welchman Bombe rebuild at Bletchley Park. Reproduced with permission
of Jochen Viehoff.

In 1954, Turing’s last published paper, an article in Penguin Science News, con-
veyed the significance of computability in mathematics to a wide audience. But he
had done little to promote his own formalism of Turing machines: just one paper
applying it to a decidability question in algebra and nothing at all for emergent
computer science. This left a gap in mathematical logic that was filled systemat-
ically by Martin Davis in his book Computability and Unsolvability from 1958.
Now Davis emulates Turing’s 1954 semi-popular work in explaining the question
of Hilbert’s Tenth Problem about the solvability of Diophantine equations, which
Turing’s definition of computability had rendered completely well defined. Martin
Davis himself made a major contribution towards its beautiful resolution in 1970,
and here he points to how this work refined and extended key aspects of Turing’s
seminal 1936 paper.

The most striking of Martin’s observations relate to universality and incom-
putability. The results he describes as arising from the celebrated work of him and
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his co-solvers elegantly clarify the reach and limitations of Turing computability
at the classical level. Turing’s later work anticipated today’s interest in ‘new com-
putational paradigms’ derived from processes in Nature, and the scope of virtual
machines. There are important and deep questions concerning the extent to which
these new models of computation are subsumed within Turing’s 1936 paradigm —
at a practical level via the development of virtual machines. Notions of universality
and reach continue to raise basic questions for today’s researchers.

Martin Hyland fills in a missing piece of history in a way that evokes and
explores Alan Turing’s close relationship with Robin Gandy. This is a counterpart
to Alan Garner’s story: another hidden history, in the same time-frame. He brings
to life a topic that Turing studied but never brought to fruition: the theory of types,
then totally abstract but which now would be seen as vital to formal structures in
computer science (a concept that in Turing’s time did not exist) and, more widely,
in relation to the use of language in scientific theories.

Martin’s contribution focuses on little-known ideas quite fundamental to a num-
ber of contemporary scientific preoccupations. The title of Robin Gandy’s early re-
search thesis, ‘Some Considerations concerning the Logical Structure underlying
Fundamental Theories in Theoretical Physics’, provides a clear link to subsequent
convergences between science and logical frameworks. A key aspect of later de-
velopments is the interrelating interests of Turing and Gandy in Church’s theory of
types. Martin notes that:

Turing’s influence as Gandy’s supervisor relates specifically to Type Theory, and I
started this paper with the thought that Turing’s interest in the area is largely forgot-
ten.

He proclaims “It is time to say something about that interest.” What follows is one
of the most fascinating discussions in this whole volume, and brings out Turing’s
distinctive, and often prescient, linking of the abstract and the concrete in a quite
unique way. Nobody else in the post-centenary period has covered this ground, and
certainly not in such an authoritative and informative way.

Andrew Booker explains Turing’s work in analytic number theory, a story which
brings in the special machine Turing started to build in 1939 and then his program-
ming of the Manchester computer in 1950, thus making an explicit example of how
software would replace the engineering of special machines. Booker’s discussion
leads into the modern status of the outstanding problem of the Riemann hypothesis
and the lasting significance of Turing’s computational ideas.

Andrew Booker’s description of the work in number theory emphasizes the ex-
tent to which Turing’s interests tend to arise from more far-reaching questions. In
this case there is an awareness of how the advent of the computer will inevitably im-
pact on the very nature of proof in mathematics and a prescient anticipation of how
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mathematicians will adapt to the changes. A theme familiar from later writings of
Turing is speculation about how computers will complement human creativity and
about the evolving nature of the balance between mind and machine. As Booker
notes, there may even be ethical consequences of this increasingly important and
complex relationship.

Ueli Maurer takes up a parallel story, inspired by the little we know of Turing’s
pre-war ideas in cryptology and the emergent concept of crypto security. He sets
out the terrain in the following terms:

Computation and information are the two most fundamental concepts in computer
science, much like mass, energy, time, and space are fundamental concepts in physics.

He goes on to describe the seminal and complementary roles played by Alan Tur-
ing’s computational model and Claude Shannon’s information theory. Beyond the
practicalities of modern cryptography, his discussion relates to the status of another
huge unsolved modern problem, that of the P = ?NP question. Ueli Maurer writes

One can only speculate what Turing might have been able to achieve in the field of
theoretical cryptography had he spent more time on the subject.

But we do not know what he may have done after 1938 that remains secret. The
Delilah speech-encipherment project reports remained secret for over 50 years,
and the full description was published only in 2012. Also in 2012, two quite funda-
mental Turing papers were released from secrecy, explaining the basis of Bayesian
analysis and its application to the Naval Enigma ‘Banburismus’ method. There
may well be much more to follow.

The timely releases by GCHQ in honour of the Turing centenary connect us to
one of Alan Turing’s most original and important contributions at Bletchley Park.
Essential to the bringing of intercepted German messages within the scope of the
Bombe and Colossus decoding machines was the application of what were recog-
nisably Bayesian statistical techniques. In ‘Alan Turing and Enigmatic Statistics’,
statistician Kanti Mardia and logician Barry Cooper take a closer look at the
history at Bletchley Park, and at the current significance of the statistics for today’s
‘big data’. The “enigmatic statistics”, we read, “foreshadowed the style of what is
now called Statistical Bioinformatics”.

Following informative examples, and an outline of the content and significance
of the released papers, Mardia and Cooper return us to the mathematics of typed
information and the use of sampling techniques for ‘type reduction’ to data acces-
sible to classical Turing computation. From this perspective, they describe how the
cryptanalytical role of Turing’s Bayesian techniques potentially take us to a better
understanding of the challenge of ‘big data’ in a wider context.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107010833
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-01083-3 - The Once and Future Turing: Computing the World
S. Barry Cooper and Andrew Hodges

Excerpt

More information

1

Algorithms, Equations, and Logic

Martin Davis

From the beginning of recorded history, people have worked with numbers using
algorithms. Algorithms are processes that can be carried out by following a set
of instructions in a completely mechanical manner without any need for creative
thought. Until the 1930s no need was felt for a precise mathematical definition or
characterization of what it means for something to be algorithmic. The need then
did arise, in those years, in connection with attempts to prove that for some prob-
lems no algorithmic solution is possible. In 1935 Alan Turing considered this mat-
ter in isolation at Cambridge University. Meanwhile, in Princeton, the combined
efforts of Kurt Godel and Alonzo Church with his students Stephen Kleene and
J. Barkley Rosser were brought to bear on the same topic. E.L. Post had also been
thinking about these things, like Turing also in isolation, since the 1920s. Although
the various formulations that were developed seemed superficially to be quite dif-
ferent from one another, they all turned out to be equivalent. This consensus about
algorithmic processes has come to be called the Church—Turing Thesis.

Turing’s conception differed from all the others in that it was formulated in terms
of an abstract machine. What was striking about his characterization is his analy-
sis that showed why even very limited fundamental operations would suffice for
all algorithms if supplemented by unlimited data storage capability. Moreover, he
demonstrated that a single such machine, Turing’s so-called ‘Universal Machine’,
could be made to carry out any algorithmic process whatever. These insights have
played a key role in the development of modern all-purpose computers. But, as will
become clear later, the notion of universality spills over into mathematical domains
far removed from computation. !

Turing began his investigation with a problem from mathematical logic, a prob-

Published in The Once and Future Turing, edited by S. Barry Cooper & Andrew Hodges. Published by
Cambridge University Press (©) 2016. Not for distribution without permission.
! The paper Turing (1936) has been reprinted in numerous collections.
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1: Algorithms, Equations, and Logic 5

lem, whose importance was emphasized by David Hilbert, that can be described as
follows:

Find an algorithm that will determine whether a specified conclusion follows
from given premises using the formal rules of logical reasoning.

By 1935 there were good reasons to believe that no such algorithm exists, and this
is what Turing set out to prove. Turing succeeded by first finding an unsolvable
problem in terms of his machines, specifically the problem of determining for a
given such machine whether it would ever output the digit 0. Then he showed how
to translate this so-called “printing” problem into the language of mathematical
logic in such a way that a purported algorithm for the problem from logic could be
used to obtain a corresponding algorithm solving this printing problem, something
he had shown could not be done. Later Post used the unsolvability of the printing
problem to prove that a previously posed mathematical problem called the word
problem for semigroups is likewise unsolvable. Still later, Turing himself used an
intricate construction to refine and extend Post’s result. Turing’s beautiful article
(Turing, 1954) explained unsolvability to the general public in clear simple terms.

When Turing learned that work leading to conclusions similar to his own had
been done in Princeton, he arranged a visit and spent two years there. A new branch
of mathematics variously called computability theory, recursive function theory or
recursion theory was now open to vigorous pursuit. One direction this new disci-
pline took was to lead to unsolvability proofs for problems from various branches
of mathematics. This essay will tell the story of where one such thread led.

The Plot

Our discussion will be framed in terms of the so-called natural numbers 0,1,2,3, ...
We will work with three different ways to specify a set of natural numbers:

(1) by an algorithm that lists all the members of the set;
(2) by an algorithm to decide membership in the set;
(3) as the parameter values for which an equation has solutions.

It will turn out that examining how these notions are related to one another will
lead to surprising and far reaching conclusions.

In 1949, in my graduate student days, I conjectured that two of these three are
equivalent in the sense that the sets of natural numbers specified by them are the
same. Although the truth of this conjecture could be seen to have very important
consequences, it was generally regarded as quite implausible. I hardly imagined
then that the proof of my conjecture would require two decades of work involv-
ing one of America’s most prominent philosophers, the first female mathematician
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to be elected to the National Academy of Science of the United States, a young
Russian mathematician, and myself.

Although a mathematically rigorous treatment would require working with the
technical notions developed by Turing and the others mentioned above, for the
most part in this essay, algorithms will be dealt with in a loose informal manner,

An Example: The Set of Perfect Squares

A number obtained by multiplying some natural number by itself is called a perfect
square. So the set of perfect squares is {0,1,4,9,16,25,...}.

Algorithm for listing the perfect squares
Start with 0 and repeatedly add 1 to it generating the sequence of
all natural numbers. As each number is generated, multiply it by

itself and put the result in a list.

Note that there are infinitely many perfect squares and so the imagined computation
to list them will continue ‘forever’. The table below shows the list in the second
row:

0123 4 5

01 4 9 16 25

Definition A set of natural numbers is listable if there is an algorithm that lists
its members (in any order with repetitions permitted).

Algorithm for deciding membership in the set of perfect squares

To decide whether a given number N is a perfect square, begin as
above listing the perfect squares in order. If one of the perfect
squares 1s equal to N, we can stop and we know that n is a perfect
square; 1f one of the perfect squares is larger than n, we can

stop and we know that M is not a perfect square.

Definition A set of natural numbers is decidable if there is an algorithm that
decides membership in it.?

Using an equation to specify the set of perfect squares
In the equation
a—x*=0
we regard a as a parameter and x as an unknown. This means that for different
values of a we seek a natural number value of x that satisfies the equation. Since

2 Other terms used for ‘listable’ are: recursively enumerable, computably enumerable. Other terms for ‘decid-
able’ are: computable, recursive.
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1: Algorithms, Equations, and Logic 7

this equation is obviously equivalent to a = x?, the values of a for which such a
solution exists are exactly the perfect squares.

Generally when we use the word “equation” we have in mind a polynomial ex-
pression set equal to 0. Polynomial expressions can involve any number of un-
knowns and may also include the parameter a. The expressions can be formed by
combining the letters and any number of natural number constants using addition,
subtraction, and multiplication. Here are some examples of polynomial expres-
sions:

X —17y* -2, x* — Py + 3axy?, (164 a®) (ax+y°).

Definition A set of natural numbers is Diophantine if there is a polynomial equa-
tion with parameter a that has natural number solutions for exactly those values of
a that are members of the set.

Examples of Diophantine Sets

o a— (x+2)(y+2) = 0 specifies the set of composite numbers; that is, numbers
other than 1 that are not primes.

e a— (2x+3)(y+ 1) = 0 specifies the set of numbers that are not powers of 2
(because they are the numbers other than 1 that have an odd divisor).

e The so-called Pell equation, x> —a(y+1)> — 1 = 0, has been well studied. It can
be proved that in addition to the obvious solutions when a = 0 it has solutions
precisely when a is not a perfect square.

Some Relationships

Theorem Every decidable set is listable.

Proof Let S be a decidable set. Generate the natural numbers in order. As each
number is generated, test it to see whether it belongs to S. If it does, place it on
a list. Move on to the next natural number. This algorithm will make a list of the
members of S. 0

The complement of a set S, written S, is the set of all natural numbers that don’t
belong to S.

Theorem The set S is decidable if and only if S, S are both listable.

Proof If S is decidable then obviously so is S, and hence both are listable.
On the other hand, if S, S are both listable then, given a number n, we can decide
whether it belongs to S as follows. We use the two listing algorithms to start making
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8 Martin Davis

lists of both S and S. We wait to see in which list n will eventually show up. Then
we will know whether n belongs to S. O

Unsolvability Theorem There is a listable set K whose complement K is not
listable. Therefore K is not decidable.

Proof See Appendix.
Theorem FEvery Diophantine set is listable.

Proof Let S be a Diophantine set, specified by an equation with parameter a and
unknowns xp, . .., x¢. Set up an ordering of all (k+ 1)-tuples (a,xj,...,x;) of natural
numbers,’ and proceed through them one by one. For each tuple, plug the numbers
into the equation. Checking to see whether these numbers do satisfy the equation is
just a matter of arithmetic. If the equation is satisfied by a particular tuple, place the
value of a from that tuple on a list. This algorithm will make a list of the members
of S. O

A Conjecture Becomes a Theorem: a Story

When I wrote my doctoral dissertation in 1950, I stuck my neck out with following:
Conjecture Every listable set is Diophantine.

On the face of it this was quite implausible. Why should any set that can be listed
by an algorithm be specifiable by something as simple as a polynomial equation?
Moreover, for reasons that will be explained later, the conjecture implies something
really implausible, that there are constants m and n such that every Diophantine set
can be specified by an equation of degree < m and with a number of unknowns
< n. However, the conjecture, if true, can be seen to lead to a solution of one of the
famous Hilbert problems.

At an International Congress of Mathematicians in 1900, David Hilbert listed 23
problems as a challenge for the future. These have become known as the Hilbert
Problems and, in addition to their intrinsic interest, these problems have com-
manded special attention because of the stature of their source. The tenth problem
in the list can be stated as follows:

3 One way to order the tuples is to introduce each natural number in succession, writing down each tuple that

includes that number together with all the previous numbers. For the case of one unknown, the pairs ordered
in that manner look like this:

(0,0),(0,1),(1,0),(1,1),(0,2),(2,0),(1,2),(2,1),(2,2),...
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1: Algorithms, Equations, and Logic 9

Problem Find an algorithm to determine for any given polynomial equation with
integer coefficients whether it has a natural number solution.*

It isn’t difficult to see that the truth of my conjecture would solve Hilbert’s tenth
problem in a negative way, by implying that no such algorithm exists. The reason is
that my conjecture implies that the set K, from the Unsolvability Theorem above, is
Diophantine. So there would be an equation that would have solutions for a given
value of its parameter a just in the case where a belongs to K. Thus, if there were
an algorithm such as Hilbert had asked for, it could be used to decide membership
in K, contradicting the fact that K is not decidable.

Despite its apparent implausibility, I had a reason to think that my conjecture
might actually be true. I was able to prove that there is a Diophantine set S whose
complement § is not Diophantine. The comparison with the Unsolvability Theorem
is striking. My proof was short and easy, but not constructive. (That means that the
proof did not provide any example of such a set; it merely proved its existence.)
It was easy to see that Diophantine sets as a class shared other properties with the
listable sets.

I tried to prove my conjecture, but the best I could do, reported in my disserta-
tion, was to prove that for every listable set S, there is an equation with parameters
a,q and k such that a number a belongs to S if and only if there is a number gg such
that the equation has solutions for that value of a, for ¢ = gg, and for all values of
k < go.% Although far from what I desired, this result turned out to play a significant
role in what followed.

When I attended the International Congress of Mathematicians at Harvard Uni-
versity in 1950, I learned that Julia Robinson, a mathematician with whose work
I was familiar, had also been working on Diophantine sets. But whereas I had
been working top down, trying to get a Diophantine-like representation for listable
sets, she had been working bottom up, trying for Diophantine definitions of vari-
ous sets. Alfred Tarski had suggested that one should prove that the set of powers
of 2, {1,2,4,8,16,...}, is not Diophantine. Julia was attracted to this problem but,
not succeeding in doing what Tarski had proposed, turned around and tried to prove
that the set of powers of 2 is Diophantine. Of course, had Tarski been right it would
have shown that my conjecture is false. Julia couldn’t prove that this set is Diophan-

tine either. But she did prove that if one could find what I like to call a Goldilocks
4 Actually, Hilbert asked for an algorithm for arbitrary integer solutions, positive, negative or zero. However, it

is not difficult to see that the two forms of the problem are equivalent.

For example, the union as well as the intersection of two Diophantine sets is also Diophantine.

Using logical symbolism,

5
6

a€S§ s (3q)(Vk)<4(3x1,...x0) [pla kg, x1,. .. x,) = 0],

where p is a polynomial with integer coefficients.
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equation then she could prove not only that the set of powers of 2 is Diophantine
but that the set of prime numbers, as well as many other sets, are Diophantine.

In the folktale, Goldilocks experiences the bears’ accommodations and finds
those that are too large, those that are too small, and finally those that are ‘just
right’. Here we are considering equations with two parameters, @ and b. Such an
equation is foo large if there are values of a,b with b > a“ for which the equation
has solutions. It is roo small if there is a number &, such that for all values of a, b for
which the equation has solutions, b < a*. So an equation is a Goldilocks equation if
it is just right, neither too large nor too small. Julia tried to find such a Goldilocks
equation, but she did not succeed.

It was at a month-long ‘Institute for Logic’ at Cornell University in the summer
of 1957 that Hilary Putnam and I began working together. We did get some pre-
liminary results that summer, but our breakthrough occurred two years later. Our
idea was to see what would happen to my conjecture if we permitted variable ex-
ponents in the equation. Thus in addition to equations like x>y — 7y3a%z+5 = 0 we
would also be considering equations like x’y* — 7y*a?z+ 5 = 0. Although we did
begin with my dissertation work, the introduction of variable exponents brought us
squarely into Julia Robinson’s territory, and we found ourselves using generaliza-
tions of some of her methods. Sets specified by equations with a parameter, where
variable exponents are allowed, are called exponential Diophantine. We were try-
ing to prove that

Every listable set is exponential Diophantine. (% %)

We came close. But we had to make use of a property of prime numbers that was
believed to be true but had not yet been proved:

PAP For every number n, there is a prime number p and a number k such that
the numbers p,p+k,p+2k, ..., p~+nk are all prime.

What we were able to prove was only that:
Theorem If PAP is true then (x ) is also true.

Actually we now know that PAP is true, because it was proved in 2004, so in
a sense our proof of (***) was correct. But in 1959, having no access to a time
machine, we had to content ourselves with the mere implication.

The existence of a Goldilocks equation also came into the picture. It follows eas-
ily from Julia’s work that if there is a Goldilocks equation then every exponential
Diophantine set is also Diophantine. Hilary and I introduced the abbreviation:

JR There exists a Goldilocks equation.
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