Contents

List of contributors
Page xiii

Preface
Page xvi

Part I Principles and techniques

1 General principles and characteristics of optical magnetometers
D. F. Jackson Kimball, E. B. Alexandrov, and D. Budker
1.1 Introduction
1.1.1 Fundamental sensitivity limits
1.1.2 Zeeman shifts and atomic spin precession
1.1.3 Quantum beats and dynamic range
1.2 Model of an optical magnetometer
1.3 Density matrix and atomic polarization moments
1.4 Sensitivity and accuracy
1.4.1 Variational sensitivity (short-term resolution) and long-term stability
1.4.2 Parameter optimization
1.4.3 Absolute accuracy and systematic errors
1.5 Vector and scalar magnetometers
1.6 Applications
2 Quantum noise in atomic magnetometers
M. V. Romalis
2.1 Introduction
2.2 Spin-projection noise
2.3 Faraday rotation measurements
2.4 Quantum back-action
2.5 Time correlation of spin-projection noise
2.6 Conditions for spin-noise dominance
2.7 Spin projection limits on magnetic field sensitivity
2.8 Spin squeezing and atomic magnetometry
2.9 Conclusion

3 Quantum noise, squeezing, and entanglement in radiofrequency optical magnetometers 40

K. Jensen and E. S. Polzik

3.1 Sources of noise 40
 3.1.1 Atomic projection noise 40
 3.1.2 Photon shot noise 41
 3.1.3 Back-action noise and QND measurements 42
 3.1.4 Technical (classical) noise 42
 3.1.5 Entanglement and spin squeezing 42

3.2 A pulsed radiofrequency magnetometer and the projection noise limit 43
 3.2.1 Pulsed RF magnetometry 44
 3.2.2 Sensitivity and bandwidth 45

3.3 Light–atom interaction 46
 3.3.1 A spin-polarized atomic ensemble interacting with polarized light 47
 3.3.2 Conditional spin squeezing 48
 3.3.3 Larmor precession, back-action noise, and two atomic ensembles 48
 3.3.4 Swap and squeezing interaction 49

3.4 Demonstration of high-sensitivity, projection-noise-limited magnetometry 50
 3.4.1 Setup, pulse sequence, and procedure 50
 3.4.2 The projection-noise-limited magnetometer 52

3.5 Demonstration of entanglement-assisted magnetometry 54

3.6 Conclusions 57

4 Mx and Mz magnetometers 60

E. B. Alexandrov and A. K. Vershovskiy

4.1 Dynamics of magnetic resonance in an alternating field 60
 4.1.1 Bloch equations and Bloch sphere 60
 4.1.2 Types of magnetic resonance signals: Mx and My signals 62

4.2 Mx and My magnetometers: general principles 63
 4.2.1 Advantages and disadvantages of Mx magnetometers 66
 4.2.2 Advantages and disadvantages of My magnetometers 67
 4.2.3 Attempts to combine advantages of Mx and My magnetometers: Mx–My tandems 72

4.3 Applications: radio-optical Mx and My magnetometers 73
 4.3.1 Alkali My magnetometers 73
 4.3.2 Mx magnetometers 75
 4.3.3 Mx–My tandems 79

4.4 Summary: Mx and My scheme limitations, prospects, and application areas 82
Contents

5 Spin-exchange-relaxation-free (SERF) magnetometers

I. Savukov and S. J. Seltzer

5.1 Introduction ... 85
5.2 Spin-exchange collisions 86
 5.2.1 The density-matrix equation 86
 5.2.2 Simple model of spin exchange 90
5.3 Bloch equation description 92
5.4 Experimental realization 95
 5.4.1 Classic SERF atomic magnetometer arrangement 95
 5.4.2 Zeroing the magnetic field 98
 5.4.3 Use of antirelaxation coatings 98
 5.4.4 Comparison with SQUIDs 99
5.5 Fundamental sensitivity 101

6 Optical magnetometry with modulated light

D. F. Jackson Kimball, S. Pustelny, V. V. Yashchuk, and D. Budker

6.1 Introduction .. 104
6.2 Typical experimental arrangements 106
6.3 Resonances in the magnetic field dependence 108
 6.3.1 Frequency modulation 108
 6.3.2 Amplitude modulation 111
 6.3.3 Polarization modulation 113
6.4 Effects at high light powers 113
6.5 Nonlinear Zeeman effect 116
6.6 Magnetometric measurements with modulated light 118
6.7 Conclusion ... 122

7 Microfabricated atomic magnetometers

S. Knappe and J. Kitching

7.1 Introduction .. 125
7.2 Sensitivity scaling with size 126
7.3 Sensor fabrication 131
7.4 Vapor cells ... 133
7.5 Heating and thermal management 134
7.6 Performance .. 135
7.7 Applications of microfabricated magnetometers 137
7.8 Outlook ... 139

8 Optical magnetometry with nitrogen-vacancy centers in diamond

V. M. Acosta, D. Budker, P. R. Hemmer, J. R. Maze, and R. L. Walsworth

8.1 Introduction .. 142
 8.1.1 Comparison with existing technologies 143
8.2 Historical background 144
 8.2.1 Single-spin optically detected magnetic resonance . 145
8.3 NV center physics 146
Contents

8.3.1 Intersystem crossing and optical pumping 146
8.3.2 Ground-state level structure and ODMR-based magnetometry 148
8.3.3 Interaction with environment 150
8.4 Experimental realizations 152
8.4.1 Near-field scanning probes and single-NV magnetometry 152
8.4.2 Wide-field array magnetic imaging 157
8.4.3 NV-ensemble magnetometers 158
8.5 Outlook 161

9 Magnetometry with cold atoms 167
\textit{W. Gawlik and J. M. Higbie}
9.1 Introduction 167
9.2 Experimental conditions 168
9.2.1 Constraints and advantages of using cold atoms for magnetometry 168
9.2.2 Cold samples of atoms above quantum degeneracy 168
9.3 Linear Faraday rotation with trapped atoms 170
9.4 Nonlinear Faraday rotation 173
9.4.1 Low-field, DC magnetometry 173
9.4.2 Coherence evolution 174
9.4.3 High-field, amplitude-modulated magneto-optical rotation 175
9.4.4 Paramagnetic nonlinear rotation 175
9.5 Magnetometry with ultra-cold atoms 176
9.5.1 Overview of ultra-cold atomic magnetometry methods 176
9.5.2 Figures of merit 180
9.5.3 Details of spinor magnetometry 182
9.5.4 Comparison with thermal-atom magnetometry 185
9.5.5 Applications 187

10 Helium magnetometers 190
\textit{R. E. Slocum, D. D. McGregor, and A. W. Brown}
10.1 Introduction 190
10.2 Helium magnetometer principles of operation 191
10.2.1 Helium resonance element 192
10.2.2 Helium optical pumping radiation sources 192
10.2.3 Optical pumping of metastable helium 194
10.2.4 Observation of optically pumped helium 196
10.2.5 Observation of magnetic resonance signals in optically pumped helium 197
10.3 Conclusions 202

11 Surface coatings for atomic magnetometry 205
\textit{S. J. Seltzer, M.-A. Bouchiat, and M. V. Balabas}
11.1 Introduction and history 205
11.2 Wall relaxation mechanisms 208
 11.2.1 Origin and time dependence of the disorienting interaction 208
 11.2.2 Methods of investigation 209
 11.2.3 Quantitative interpretation 212
11.3 Coating preparation 213
11.4 Light-induced atomic desorption (LIAD) 217
11.5 Recent characterization methods 219

12 Magnetic shielding 225
V. V. Yashchuk, S.-K. Lee, and E. Paperno
 12.1 Introduction 225
 12.2 Ferromagnetic shielding 225
 12.2.1 Simplified estimation of ferromagnetic shielding efficiency for a static magnetic field 226
 12.2.2 Multilayer ferromagnetic shielding 227
 12.2.3 Optimization of permeability: annealing, degaussing, shaking, tapping 232
 12.2.4 Magnetic-field noise in ferromagnetic shielding 235
 12.2.5 Examples of ferromagnetic shielding systems 236
 12.3 Ferrite shields 238
 12.3.1 Permeability 238
 12.3.2 Fabrication and the effect of an air gap 239
 12.3.3 Thermal noise 240
 12.4 Superconducting shields 241
 12.4.1 Principles 242
 12.4.2 Materials and fabrication 243
 12.4.3 Image field 244

Part II Applications 249
13 Remote detection magnetometry 251
 S. M. Rochester, J. M. Higbie, B. Patton, D. Budker, R. Holzlöhner, and D. Bonaccini Calia
 13.1 Introduction 251
 13.2 A remotely interrogated all-optical ^{87}Rb magnetometer 252
 13.3 Magnetometry with mesospheric sodium 256
14 Detection of nuclear magnetic resonance with atomic magnetometers 265
 M. P. Ledbetter, I. Savukov, S. J. Seltzer, and D. Budker
 14.1 Introduction 265
 14.2 The NMR Hamiltonian 267
 14.3 Challenges associated with detection of NMR using atomic magnetometers 268
 14.4 Remote detection 269
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5 Solenoid matching of Zeeman resonance frequencies</td>
<td>272</td>
</tr>
<tr>
<td>14.6 Flux transformer</td>
<td>273</td>
</tr>
<tr>
<td>14.7 Nuclear quadrupole resonance</td>
<td>274</td>
</tr>
<tr>
<td>14.8 Zero-field nuclear magnetic resonance</td>
<td>275</td>
</tr>
<tr>
<td>14.8.1 Thermally polarized zero-field NMR J spectroscopy</td>
<td>275</td>
</tr>
<tr>
<td>14.8.2 Parahydrogen-enhanced zero-field NMR</td>
<td>278</td>
</tr>
<tr>
<td>14.8.3 Zeeman effects on J-coupled multiplets</td>
<td>281</td>
</tr>
<tr>
<td>14.9 Conclusions</td>
<td>282</td>
</tr>
<tr>
<td>15 Space magnetometry</td>
<td>285</td>
</tr>
<tr>
<td>B. Patton, A. W. Brown, R. E. Slocum, and E. J. Smith</td>
<td></td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>285</td>
</tr>
<tr>
<td>15.1.1 Achievements of space magnetometry</td>
<td>285</td>
</tr>
<tr>
<td>15.1.2 Challenges unique to space magnetometers</td>
<td>286</td>
</tr>
<tr>
<td>15.1.3 Magnetic sensors used in space missions</td>
<td>287</td>
</tr>
<tr>
<td>15.2 Alkali-vapor magnetometers in space applications</td>
<td>287</td>
</tr>
<tr>
<td>15.2.1 Initial development of Earth’s-field alkali magnetometers</td>
<td>287</td>
</tr>
<tr>
<td>15.2.2 Sensor design</td>
<td>288</td>
</tr>
<tr>
<td>15.2.3 NASA missions employing alkali-vapor magnetometers</td>
<td>289</td>
</tr>
<tr>
<td>15.3 Helium magnetometers in space applications</td>
<td>293</td>
</tr>
<tr>
<td>15.3.1 Introduction</td>
<td>293</td>
</tr>
<tr>
<td>15.3.2 Future helium space magnetometers</td>
<td>298</td>
</tr>
<tr>
<td>16 Detection of biomagnetic fields</td>
<td>303</td>
</tr>
<tr>
<td>A. Ben-Amar Baranga, T. G. Walker, and R. T. Wakai</td>
<td></td>
</tr>
<tr>
<td>16.1 Sources of biomagnetism</td>
<td>303</td>
</tr>
<tr>
<td>16.2 Development of biomagnetic field detection</td>
<td>304</td>
</tr>
<tr>
<td>16.3 Medical applications</td>
<td>308</td>
</tr>
<tr>
<td>16.4 Magnetocardiography with atomic magnetometers</td>
<td>310</td>
</tr>
<tr>
<td>16.5 Magnetoencephalography with an atomic magnetometer</td>
<td>313</td>
</tr>
<tr>
<td>16.6 Summary</td>
<td>316</td>
</tr>
<tr>
<td>17 Geophysical applications</td>
<td>319</td>
</tr>
<tr>
<td>M. D. Prouty, R. Johnson, I. Hrvoic, and A. K. Vershovskiy</td>
<td></td>
</tr>
<tr>
<td>17.1 Airborne magnetometers and gradiometers</td>
<td>319</td>
</tr>
<tr>
<td>17.2 Ground magnetometers/gradiometers</td>
<td>321</td>
</tr>
<tr>
<td>17.3 Marine magnetometers/gradiometers</td>
<td>323</td>
</tr>
<tr>
<td>17.4 Vector magnetometry with optically pumped magnetometers</td>
<td>324</td>
</tr>
<tr>
<td>17.5 Earthquake studies</td>
<td>329</td>
</tr>
<tr>
<td>17.6 Applications of magnetometers to detecting unexploded ordnance (UXO)</td>
<td></td>
</tr>
<tr>
<td>17.6.1 Introduction to the problem</td>
<td>331</td>
</tr>
<tr>
<td>17.6.2 Using magnetometers for UXO detection</td>
<td>332</td>
</tr>
<tr>
<td>17.6.3 Mathematics of UXO detection</td>
<td>333</td>
</tr>
</tbody>
</table>
Part III Broader impact

18 Tests of fundamental physics with optical magnetometers 339
 D. F. Jackson Kimball, S. K. Lamoreaux, and T. E. Chupp
 18.1 Overview and introduction 339
 18.2 Searches for permanent electric dipole moments 341
 18.2.1 Basic experimental setup for an EDM experiment 344
 18.2.2 Sensitivity to EDMs 345
 18.2.3 Electric fields and coherence times for various systems 346
 18.2.4 Magnetometry and comagnetometry in EDM experiments 349
 18.3 Anomalous spin-dependent forces 352
 18.3.1 Background 352
 18.3.2 Experiments 355
 18.4 CPT and local Lorentz invariance tests 361
 18.5 Conclusion 364

19 Nuclear magnetic resonance gyroscopes 369
 E. A. Donley and J. Kitching
 19.1 Introduction 369
 19.2 NMR frequency shifts and relaxation 373
 19.2.1 Spin exchange 374
 19.2.2 Quadrupole surface frequency shifts 375
 19.2.3 General wall relaxation 377
 19.2.4 Magnetic-field gradients 377
 19.2.5 Noble-gas self-relaxation 378
 19.3 Alkali shifts and relaxation mechanisms 379
 19.4 Two-spin NMR gyroscope 379
 19.5 Comagnetometer 381
 19.6 Miniaturization 383
 19.7 Conclusion 383

20 Commercial magnetometers and their application 387
 D. C. Hovde, M. D. Prouty, I. Hrvoic, and R. E. Slocum
 20.1 Introduction 387
 20.2 Specifications 388
 20.2.1 Noise 388
 20.2.2 Resolution 391
 20.2.3 Sensitivity 391
 20.2.4 Sample rate and cycle time 392
 20.2.5 Bandwidth 392
 20.2.6 Absolute error and drift 393
 20.2.7 Gradient tolerance 394
 20.2.8 Dead zones 395
 20.2.9 Heading error 395
 20.2.10 Range of measurement 397
20.3 History of commercial magnetometry 398
 20.3.1 Fluxgate magnetometers 398
 20.3.2 SQUID magnetometers 399
 20.3.3 Proton-precession and Overhauser magnetometers 399
 20.3.4 Alkali metal magnetometers: rubidium, cesium, and potassium 401
 20.3.5 Helium-3 and helium-4 magnetometers 402
20.4 Military applications 403
20.5 Anticipated improvements 404

Index 406