OPTICAL MAGNETOMETRY

Featuring chapters written by leading experts in magnetometry, this book provides comprehensive coverage of the principles, technology, and diverse applications of optical magnetometry, from testing fundamental laws of nature to detecting biomagnetic fields and medical diagnostics.

Readers will find a wealth of technical information, from antirelaxation-coating techniques, microfabrication, and magnetic shielding to geomagnetic-field measurements, space magnetometry, detection of biomagnetic fields, detection of NMR and MRI signals, and rotation sensing. The book includes an original survey of the history of optical magnetometry, and a chapter on the commercial use of these technologies.

The book is supported by extensive online material, containing historical overviews, derivations, side-line discussion, and additional plots and tables, available at www.cambridge.org/9781107010352. As well as introducing graduate students to this field, the book is also a useful reference for researchers in atomic physics.

Dmitry Budker is Professor of Physics at the University of California at Berkeley; Faculty Scientist in the Nuclear Science Division, LBNL; and Co-founder and Scientist of Rochester Scientific, LLC. His research interests are related to the study of violation of discrete symmetries and the development and applications of the optical-magnetometry techniques.

Derek F. Jackson Kimball is Associate Professor and Chair of the Department of Physics at California State University – East Bay. His research focuses on using techniques of experimental atomic physics and nonlinear optics for precision tests of the fundamental laws of physics.
OPTICAL MAGNETOMETRY

Edited by

DMITRY BUDKER
University of California at Berkeley

DEREK F. JACKSON KIMBALL
California State University – East Bay
Contents

List of contributors page xiii
Preface xvi

Part I Principles and techniques 1
1 General principles and characteristics of optical magnetometers 3
 D. F. Jackson Kimball, E. B. Alexandrov, and D. Budker 3
 1.1 Introduction 3
 1.1.1 Fundamental sensitivity limits 4
 1.1.2 Zeeman shifts and atomic spin precession 5
 1.1.3 Quantum beats and dynamic range 8
 1.2 Model of an optical magnetometer 8
 1.3 Density matrix and atomic polarization moments 13
 1.4 Sensitivity and accuracy 16
 1.4.1 Variational sensitivity (short-term resolution) and long-term stability 16
 1.4.2 Parameter optimization 18
 1.4.3 Absolute accuracy and systematic errors 19
 1.5 Vector and scalar magnetometers 20
 1.6 Applications 21
2 Quantum noise in atomic magnetometers 25
 M. V. Romalis 25
 2.1 Introduction 25
 2.2 Spin-projection noise 26
 2.3 Faraday rotation measurements 26
 2.4 Quantum back-action 27
 2.5 Time correlation of spin-projection noise 28
 2.6 Conditions for spin-noise dominance 30
 2.7 Spin projection limits on magnetic field sensitivity 32
 2.8 Spin squeezing and atomic magnetometry 36
 2.9 Conclusion 37
3 Quantum noise, squeezing, and entanglement in radiofrequency optical magnetometers 40

K. Jensen and E. S. Polzik

3.1 Sources of noise 40
3.1.1 Atomic projection noise 40
3.1.2 Photon shot noise 41
3.1.3 Back-action noise and QND measurements 42
3.1.4 Technical (classical) noise 42
3.1.5 Entanglement and spin squeezing 42

3.2 A pulsed radiofrequency magnetometer and the projection noise limit 43
3.2.1 Pulsed RF magnetometry 44
3.2.2 Sensitivity and bandwidth 45

3.3 Light–atom interaction 46
3.3.1 A spin-polarized atomic ensemble interacting with polarized light 47
3.3.2 Conditional spin squeezing 48
3.3.3 Larmor precession, back-action noise, and two atomic ensembles 48
3.3.4 Swap and squeezing interaction 49

3.4 Demonstration of high-sensitivity, projection-noise-limited magnetometry 50
3.4.1 Setup, pulse sequence, and procedure 50
3.4.2 The projection-noise-limited magnetometer 52

3.5 Demonstration of entanglement-assisted magnetometry 54

3.6 Conclusions 57

4 Mx and Mz magnetometers 60

E. B. Alexandrov and A. K. Vershovskiy

4.1 Dynamics of magnetic resonance in an alternating field 60
4.1.1 Bloch equations and Bloch sphere 60
4.1.2 Types of magnetic resonance signals: Mx and Mz signals 62

4.2 Mx and Mz magnetometers: general principles 63
4.2.1 Advantages and disadvantages of Mz magnetometers 66
4.2.2 Advantages and disadvantages of Mx magnetometers 67
4.2.3 Attempts to combine advantages of Mz and Mx magnetometers: Mx–Mz tandems 72

4.3 Applications: radio-optical Mx and Mz magnetometers 73
4.3.1 Alkali Mz magnetometers 73
4.3.2 Mx magnetometers 75
4.3.3 Mz–Mx tandems 79

4.4 Summary: Mx and Mz scheme limitations, prospects, and application areas 82
5 Spin-exchange-relaxation-free (SERF) magnetometers 85
 I. Savukov and S. J. Seltzer
 5.1 Introduction 85
 5.2 Spin-exchange collisions 86
 5.2.1 The density-matrix equation 86
 5.2.2 Simple model of spin exchange 90
 5.3 Bloch equation description 92
 5.4 Experimental realization 95
 5.4.1 Classic SERF atomic magnetometer arrangement 95
 5.4.2 Zeroing the magnetic field 98
 5.4.3 Use of antirelaxation coatings 98
 5.4.4 Comparison with SQUIDs 99
 5.5 Fundamental sensitivity 101
6 Optical magnetometry with modulated light 104
 D. F. Jackson Kimball, S. Pustelny, V. V. Yashchuk, and D. Budker
 6.1 Introduction 104
 6.2 Typical experimental arrangements 106
 6.3 Resonances in the magnetic field dependence 108
 6.3.1 Frequency modulation 108
 6.3.2 Amplitude modulation 111
 6.3.3 Polarization modulation 113
 6.4 Effects at high light powers 113
 6.5 Nonlinear Zeeman effect 116
 6.6 Magnetometric measurements with modulated light 118
 6.7 Conclusion 122
7 Microfabricated atomic magnetometers 125
 S. Knappe and J. Kitching
 7.1 Introduction 125
 7.2 Sensitivity scaling with size 126
 7.3 Sensor fabrication 131
 7.4 Vapor cells 133
 7.5 Heating and thermal management 134
 7.6 Performance 135
 7.7 Applications of microfabricated magnetometers 137
 7.8 Outlook 139
8 Optical magnetometry with nitrogen-vacancy centers in diamond 142
 V. M. Acosta, D. Budker, P. R. Hemmer, J. R. Maze, and R. L. Walsworth
 8.1 Introduction 142
 8.1.1 Comparison with existing technologies 143
 8.2 Historical background 144
 8.2.1 Single-spin optically detected magnetic resonance 145
 8.3 NV center physics 146
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.1</td>
<td>Intersystem crossing and optical pumping</td>
<td>146</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Ground-state level structure and ODMR-based magnetometry</td>
<td>148</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Interaction with environment</td>
<td>150</td>
</tr>
<tr>
<td>8.4</td>
<td>Experimental realizations</td>
<td>152</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Near-field scanning probes and single-NV magnetometry</td>
<td>152</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Wide-field array magnetic imaging</td>
<td>157</td>
</tr>
<tr>
<td>8.4.3</td>
<td>NV-ensemble magnetometers</td>
<td>158</td>
</tr>
<tr>
<td>8.5</td>
<td>Outlook</td>
<td>161</td>
</tr>
<tr>
<td>9</td>
<td>Magnetometry with cold atoms</td>
<td>167</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>167</td>
</tr>
<tr>
<td>9.2</td>
<td>Experimental conditions</td>
<td>168</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Constraints and advantages of using cold atoms for magnetometry</td>
<td>168</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Cold samples of atoms above quantum degeneracy</td>
<td>168</td>
</tr>
<tr>
<td>9.3</td>
<td>Linear Faraday rotation with trapped atoms</td>
<td>170</td>
</tr>
<tr>
<td>9.4</td>
<td>Nonlinear Faraday rotation</td>
<td>173</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Low-field, DC magnetometry</td>
<td>173</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Coherence evolution</td>
<td>174</td>
</tr>
<tr>
<td>9.4.3</td>
<td>High-field, amplitude-modulated magneto-optical rotation</td>
<td>175</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Paramagnetic nonlinear rotation</td>
<td>175</td>
</tr>
<tr>
<td>9.5</td>
<td>Magnetometry with ultra-cold atoms</td>
<td>176</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Overview of ultra-cold atomic magnetometry methods</td>
<td>176</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Figures of merit</td>
<td>180</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Details of spinor magnetometry</td>
<td>182</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Comparison with thermal-atom magnetometry</td>
<td>185</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Applications</td>
<td>187</td>
</tr>
<tr>
<td>10</td>
<td>Helium magnetometers</td>
<td>190</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>190</td>
</tr>
<tr>
<td>10.2</td>
<td>Helium magnetometer principles of operation</td>
<td>191</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Helium resonance element</td>
<td>192</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Helium optical pumping radiation sources</td>
<td>192</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Optical pumping of metastable helium</td>
<td>194</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Observation of optically pumped helium</td>
<td>196</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Observation of magnetic resonance signals in optically pumped helium</td>
<td>197</td>
</tr>
<tr>
<td>10.3</td>
<td>Conclusions</td>
<td>202</td>
</tr>
<tr>
<td>11</td>
<td>Surface coatings for atomic magnetometry</td>
<td>205</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction and history</td>
<td>205</td>
</tr>
</tbody>
</table>
Contents

11.2 Wall relaxation mechanisms 208
 11.2.1 Origin and time dependence of the disorienting interaction 208
 11.2.2 Methods of investigation 209
 11.2.3 Quantitative interpretation 212

11.3 Coating preparation 213

11.4 Light-induced atomic desorption (LIAD) 217

11.5 Recent characterization methods 219

12 Magnetic shielding 225
 V. V. Yashchuk, S.-K. Lee, and E. Paperno
 12.1 Introduction 225
 12.2 Ferromagnetic shielding 225
 12.2.1 Simplified estimation of ferromagnetic shielding efficiency for a static magnetic field 226
 12.2.2 Multilayer ferromagnetic shielding 227
 12.2.3 Optimization of permeability: annealing, degaussing, shaking, tapping 232
 12.2.4 Magnetic-field noise in ferromagnetic shielding 235
 12.2.5 Examples of ferromagnetic shielding systems 236
 12.3 Ferrite shields 238
 12.3.1 Permeability 238
 12.3.2 Fabrication and the effect of an air gap 239
 12.3.3 Thermal noise 240
 12.4 Superconducting shields 241
 12.4.1 Principles 242
 12.4.2 Materials and fabrication 243
 12.4.3 Image field 244

Part II Applications 249

13 Remote detection magnetometry 251
 S. M. Rochester, J. M. Higbie, B. Patton, D. Budker, R. Holzlöhner, and D. Bonaccini Calia
 13.1 Introduction 251
 13.2 A remotely interrogated all-optical 87Rb magnetometer 252
 13.3 Magnetometry with mesospheric sodium 256

14 Detection of nuclear magnetic resonance with atomic magnetometers 265
 M. P. Ledbetter, I. Savukov, S. J. Seltzer, and D. Budker
 14.1 Introduction 265
 14.2 The NMR Hamiltonian 267
 14.3 Challenges associated with detection of NMR using atomic magnetometers 268
 14.4 Remote detection 269
14.5 Solenoid matching of Zeeman resonance frequencies 272
14.6 Flux transformer 273
14.7 Nuclear quadrupole resonance 274
14.8 Zero-field nuclear magnetic resonance 275
 14.8.1 Thermally polarized zero-field NMR J spectroscopy 275
 14.8.2 Parahydrogen-enhanced zero-field NMR 278
 14.8.3 Zeeman effects on J-coupled multiplets 281
14.9 Conclusions 282

15 Space magnetometry 285
 B. Patton, A. W. Brown, R. E. Slocum, and E. J. Smith
15.1 Introduction 285
 15.1.1 Achievements of space magnetometry 285
 15.1.2 Challenges unique to space magnetometers 286
 15.1.3 Magnetic sensors used in space missions 287
15.2 Alkali-vapor magnetometers in space applications 287
 15.2.1 Initial development of Earth’s-field alkali magnetometers 287
 15.2.2 Sensor design 288
 15.2.3 NASA missions employing alkali-vapor magnetometers 289
15.3 Helium magnetometers in space applications 293
 15.3.1 Introduction 293
 15.3.2 Future helium space magnetometers 298

16 Detection of biomagnetic fields 303
 A. Ben-Amar Baranga, T. G. Walker, and R. T. Wakai
16.1 Sources of biomagnetism 303
16.2 Development of biomagnetic field detection 304
16.3 Medical applications 308
16.4 Magnetocardiography with atomic magnetometers 310
16.5 Magnetoencephalography with an atomic magnetometer 313
16.6 Summary 316

17 Geophysical applications 319
 M. D. Prouty, R. Johnson, I. Hrvoic, and A. K. Vershovskiy
17.1 Airborne magnetometers and gradiometers 319
17.2 Ground magnetometers/gradiometers 321
17.3 Marine magnetometers/gradiometers 323
17.4 Vector magnetometry with optically pumped magnetometers 324
17.5 Earthquake studies 329
17.6 Applications of magnetometers to detecting unexploded ordnance (UXO) 331
 17.6.1 Introduction to the problem 331
 17.6.2 Using magnetometers for UXO detection 332
 17.6.3 Mathematics of UXO detection 333
Contents

Part III Broader impact

18 Tests of fundamental physics with optical magnetometers 339
 D. F. Jackson Kimball, S. K. Lamoreaux, and T. E. Chupp
 18.1 Overview and introduction 339
 18.2 Searches for permanent electric dipole moments 341
 18.2.1 Basic experimental setup for an EDM experiment 344
 18.2.2 Sensitivity to EDMs 345
 18.2.3 Electric fields and coherence times for various systems 346
 18.2.4 Magnetometry and comagnetometry in EDM experiments 349
 18.3 Anomalous spin-dependent forces 352
 18.3.1 Background 352
 18.3.2 Experiments 355
 18.4 CPT and local Lorentz invariance tests 361
 18.5 Conclusion 364

19 Nuclear magnetic resonance gyroscopes 369
 E. A. Donley and J. Kitching
 19.1 Introduction 369
 19.2 NMR frequency shifts and relaxation 373
 19.2.1 Spin exchange 374
 19.2.2 Quadrupole surface frequency shifts 375
 19.2.3 General wall relaxation 377
 19.2.4 Magnetic-field gradients 377
 19.2.5 Noble-gas self-relaxation 378
 19.3 Alkali shifts and relaxation mechanisms 379
 19.4 Two-spin NMR gyroscope 379
 19.5 Comagnetometer 381
 19.6 Miniaturization 383
 19.7 Conclusion 383

20 Commercial magnetometers and their application 387
 D. C. Hovde, M. D. Prouty, I. Hrvoic, and R. E. Slocum
 20.1 Introduction 387
 20.2 Specifications 388
 20.2.1 Noise 388
 20.2.2 Resolution 391
 20.2.3 Sensitivity 391
 20.2.4 Sample rate and cycle time 392
 20.2.5 Bandwidth 392
 20.2.6 Absolute error and drift 393
 20.2.7 Gradient tolerance 394
 20.2.8 Dead zones 395
 20.2.9 Heading error 395
 20.2.10 Range of measurement 397
Contents

20.3 History of commercial magnetometry 398
 20.3.1 Fluxgate magnetometers 398
 20.3.2 SQUID magnetometers 399
 20.3.3 Proton-precession and Overhauser magnetometers 399
 20.3.4 Alkali metal magnetometers: rubidium, cesium, and potassium 401
 20.3.5 Helium-3 and helium-4 magnetometers 402

20.4 Military applications 403
20.5 Anticipated improvements 404

Index 406
Contributors

V. M. Acosta Department of Physics, University of California, Berkeley, California 94720-7300, USA.
E. B. Alexandrov Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Polytechnisheskaya, St. Petersburg, 194021, Russia.
M. V. Balabas S. I. Vavilov State Optical Institute, St. Petersburg 199034, Russia.
A. Ben-Amar Baranga Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel.
D. Bonaccini Calia Laser Systems Department, European Southern Observatory, D-85748 Garching near Munich, Germany.
M.-A. Bouchiat Laboratoire Kastler Brossel, Département de Physique de l'Ecole Normale Supérieure, 24 Rue Lhomond, F-75231 Paris Cedex 05, France.
A. W. Brown Polatomic Inc., Richardson, Texas 75081, USA.
D. Budker Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA; Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
T. E. Chupp Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA.
E. A. Donley Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305-3328, USA.
W. Gawlik Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland.
P. R. Hemmer Department of Electrical and Computer Engineering, Texas A & M University, College Station, Texas 77843, USA.
J. M. Higbie Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA.
R. Holzlöhner Laser Systems Department, European Southern Observatory, D-85748 Garching near Munich, Germany.
D. C. Hvede Southwest Sciences – Ohio Operations, 6837 Main Street, Cincinnati, Ohio 45244, USA.
I. Hrvoic GEM Systems Inc., 135 Spy Court, Markham, Ontario L3R 5H6, Canada.
List of contributors

D. F. Jackson Kimball Department of Physics, California State University – East Bay, Hayward, California 94542-3084, USA.
K. Jensen Niels Bohr Institute, University of Copenhagen, DK 2100, Denmark; QUANTOP, Danish National Research Foundation Center for Quantum Optics, Denmark.
R. Johnson Geometrics Inc., 2190 Fortune Drive, San Jose, California 95131, USA.
J. Kitching Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA.
S. Knappe Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA.
S. K. Lamoreaux Department of Physics, Yale University, New Haven, Connecticut 06520-8120, USA.
M. P. Ledbetter Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA.
S.-K. Lee GE Global Research Center, Niskayuna, New York 12309, USA.
J. R. Maze Department of Physics, Pontificia Universidad Catolica, Santiago 7820436, Chile.
D. D. McGregor Polatomic Inc., Richardson, Texas 75081, USA.
E. Paperno Department of Physics, Nuclear Research Center, Negev 84190 Beer-Sheva, Israel; Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.
B. Patton Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA.
E. S. Polzik Niels Bohr Institute, University of Copenhagen, DK 2100, Denmark; QUANTOP, Danish National Research Foundation Center for Quantum Optics, Denmark.
M. D. Prouty Geometrics Inc., 2190 Fortune Drive, San Jose, California 95131, USA.
S. Pustelny Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland.
S. M. Rochester Rochester Scientific, El Cerrito, California 94530-1757, USA; Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA.
M. V. Romalis Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
I. Savukov Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
S. J. Seltzer Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Department of Chemistry, University of California, Berkeley, California 94720-7300, USA.
R. E. Slocum Polatomic Inc., Richardson, Texas 75081, USA.
E. J. Smith Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91009, USA.
List of contributors

A. K. Vershovskiy Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Polytechnisheskaya, St. Petersburg, 194021, Russia.

R. T. Wakai Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.

T. G. Walker Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA.

R. L. Walsworth Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA.

V. V. Yashchuk Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Optical magnetometry, in which a magnetic field is measured by observing changes in the properties of light interacting with matter immersed in the field, is not a new field. It has its origins in Michael Faraday’s discovery in 1845 of the rotation of the plane of linearly polarized light as it propagated through a dense glass in the presence of a magnetic field. Faraday’s historic discovery marked the first experimental evidence relating light and electromagnetism.

A century later, atomic magnetometers based on optical pumping were introduced and gradually perfected by such giants as Alfred Kastler, Hans Dehmelt, Jean Brossel, William Bell, Arnold Bloom, and Claude Cohen-Tannoudji, to name but a few of the pioneers. Recent years have seen a revolution in the field related to the development of tunable diode lasers, efficient antirelaxation wall coatings, techniques for elimination of spin-exchange relaxation, and, most recently, the advent of optical magnetometers based on color centers in diamond. Today, optical magnetometers are pushing the boundaries of sensitivity and spatial resolution, and, in contrast to their able competition from superconducting quantum interference device (SQUID) magnetometers, they do not require cryogenic temperatures. Numerous novel applications of optical magnetometers have flourished, from detecting signals in microfluidic nuclear-magnetic resonance chips to measuring magnetic fields of the human brain to observing single nuclear spins in a solid matrix.

The remarkable progress of optical magnetometry during recent years called for a single-source reference to help those entering the field, including students and practitioners interested in applications, to get a “jump-start” on the principles, techniques, conventions, and the latest achievements. Toward this goal, we have assembled a remarkable group of authors, who have teamed up to prepare twenty pedagogical chapters packed with information. We are excited to offer the result of this effort for the perusal and judgement of the reader. Of course, we welcome and appreciate feedback on the content of the book, which can be sent to us via e-mail (dbudker@gmail.com or derek.jacksonkimball@csueastbay.edu). Please note that the book web site www.cambridge.org/9781107010352 is a repository for additional material related to the subjects discussed in the chapters.
Preface

In addition to our deep gratitude to the Cambridge University Press editors for their encouragement and support, and to all the contributors for their hard work writing and rewriting the chapters based on our feedback, we particularly thank Professor Michael V. Romalis who helped us define the scope and direction of this project and who helped edit several chapters.